Department of Computer Science, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Blavatnik School of Computer Science, Tel Aviv University, Tel Aviv, 6997801, Israel.
Nat Commun. 2019 Jul 31;10(1):3417. doi: 10.1038/s41467-019-11052-9.
High costs and technical limitations of cell sorting and single-cell techniques currently restrict the collection of large-scale, cell-type-specific DNA methylation data. This, in turn, impedes our ability to tackle key biological questions that pertain to variation within a population, such as identification of disease-associated genes at a cell-type-specific resolution. Here, we show mathematically and empirically that cell-type-specific methylation levels of an individual can be learned from its tissue-level bulk data, conceptually emulating the case where the individual has been profiled with a single-cell resolution and then signals were aggregated in each cell population separately. Provided with this unprecedented way to perform powerful large-scale epigenetic studies with cell-type-specific resolution, we revisit previous studies with tissue-level bulk methylation and reveal novel associations with leukocyte composition in blood and with rheumatoid arthritis. For the latter, we further show consistency with validation data collected from sorted leukocyte sub-types.
目前,细胞分选和单细胞技术的高成本和技术限制限制了大规模、细胞类型特异性 DNA 甲基化数据的收集。这反过来又阻碍了我们解决与群体内变异相关的关键生物学问题的能力,例如以细胞类型特异性分辨率识别与疾病相关的基因。在这里,我们从数学和经验上证明,可以从个体的组织水平批量数据中学习到个体的细胞类型特异性甲基化水平,从概念上模拟个体已经以单细胞分辨率进行了分析,然后分别在每个细胞群体中聚合信号的情况。有了这种前所未有的方法,我们可以进行具有细胞类型特异性分辨率的强大的大规模表观遗传学研究,我们重新审视了之前使用组织水平批量甲基化的研究,并揭示了与血液中白细胞组成和类风湿关节炎的新关联。对于后者,我们还进一步展示了与从分选的白细胞亚型中收集的验证数据的一致性。