Suppr超能文献

深度学习 MRI 放射组学列线图可预测 T3N1M0 期鼻咽癌患者的生存情况。

A deep learning MR-based radiomic nomogram may predict survival for nasopharyngeal carcinoma patients with stage T3N1M0.

机构信息

School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, PR China; CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, PR China.

State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, PR China.

出版信息

Radiother Oncol. 2020 Oct;151:1-9. doi: 10.1016/j.radonc.2020.06.050. Epub 2020 Jul 4.

Abstract

PURPOSE

To estimate the prognostic value of deep learning (DL) magnetic resonance (MR)-based radiomics for stage T3N1M0 nasopharyngeal carcinoma (NPC) patients receiving induction chemotherapy (ICT) prior to concurrent chemoradiotherapy (CCRT).

METHODS

A total of 638 stage T3N1M0 NPC patients (training cohort: n = 447; test cohort: n = 191) were enrolled and underwent MRI scans before receiving ICT + CCRT. From the pretreatment MR images, DL-based radiomic signatures were developed to predict disease-free survival (DFS) in an end-to-end way. Incorporating independent clinical prognostic parameters and radiomic signatures, a radiomic nomogram was built through multivariable Cox proportional hazards method. The discriminative performance of the radiomic nomogram was assessed using the concordance index (C-index) and the Kaplan-Meier estimator.

RESULTS

Three DL-based radiomic signatures were significantly correlated with DFS in the training (C-index: 0.695-0.731, all p < 0.001) and test (C-index: 0.706-0.755, all p < 0.001) cohorts. Integrating radiomic signatures with clinical factors significantly improved the predictive value compared to the clinical model in the training (C-index: 0.771 vs. 0.640, p < 0.001) and test (C-index: 0.788 vs. 0.625, p = 0.001) cohorts. Furthermore, risk stratification using the radiomic nomogram demonstrated that the high-risk group exhibited short-lived DFS compared to the low-risk group in the training cohort (hazard ratio [HR]: 6.12, p < 0.001), which was validated in the test cohort (HR: 6.90, p < 0.001).

CONCLUSIONS

Our DL-based radiomic nomogram may serve as a noninvasive and useful tool for pretreatment prognostic prediction and risk stratification in stage T3N1M0 NPC.

摘要

目的

评估深度学习(DL)磁共振(MR)基于放射组学对接受诱导化疗(ICT)后行同期放化疗(CCRT)的 T3N1M0 期鼻咽癌(NPC)患者的预后价值。

方法

共纳入 638 例 T3N1M0 期 NPC 患者(训练队列:n=447;测试队列:n=191),并在接受 ICT+CCRT 前进行 MRI 扫描。从预处理的 MR 图像中,以端到端的方式开发基于 DL 的放射组学特征来预测无病生存(DFS)。通过多变量 Cox 比例风险方法将独立的临床预后参数和放射组学特征结合起来,构建放射组学列线图。通过一致性指数(C-index)和 Kaplan-Meier 估计器评估放射组学列线图的判别性能。

结果

在训练队列(C-index:0.695-0.731,均 P<0.001)和测试队列(C-index:0.706-0.755,均 P<0.001)中,三个基于 DL 的放射组学特征与 DFS 显著相关。与临床模型相比,将放射组学特征与临床因素结合可显著提高预测价值,在训练队列(C-index:0.771 与 0.640,P<0.001)和测试队列(C-index:0.788 与 0.625,P=0.001)中均如此。此外,基于放射组学列线图的风险分层显示,在训练队列中,高危组的 DFS 较低危组更短(危险比[HR]:6.12,P<0.001),在测试队列中也得到了验证(HR:6.90,P<0.001)。

结论

我们的基于 DL 的放射组学列线图可作为 T3N1M0 期 NPC 患者的一种非侵入性、有用的工具,用于治疗前预后预测和风险分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验