Yuan Min, Xu Xu Steven, Yang Yaning, Zhou Yinsheng, Li Yi, Xu Jinfeng, Pinheiro Jose
Anhui Medical University, Anhui, China.
Genmab US, Inc., Princeton, NJ, USA.
Brief Bioinform. 2021 May 20;22(3). doi: 10.1093/bib/bbaa130.
Genome-wide association studies (GWAS) using longitudinal phenotypes collected over time is appealing due to the improvement of power. However, computation burden has been a challenge because of the complex algorithms for modeling the longitudinal data. Approximation methods based on empirical Bayesian estimates (EBEs) from mixed-effects modeling have been developed to expedite the analysis. However, our analysis demonstrated that bias in both association test and estimation for the existing EBE-based methods remains an issue. We propose an incredibly fast and unbiased method (simultaneous correction for EBE, SCEBE) that can correct the bias in the naive EBE approach and provide unbiased P-values and estimates of effect size. Through application to Alzheimer's Disease Neuroimaging Initiative data with 6 414 695 single nucleotide polymorphisms, we demonstrated that SCEBE can efficiently perform large-scale GWAS with longitudinal outcomes, providing nearly 10 000 times improvement of computational efficiency and shortening the computation time from months to minutes. The SCEBE package and the example datasets are available at https://github.com/Myuan2019/SCEBE.
使用随时间收集的纵向表型进行全基因组关联研究(GWAS)因功效提高而颇具吸引力。然而,由于用于纵向数据建模的复杂算法,计算负担一直是个挑战。基于混合效应模型的经验贝叶斯估计(EBE)的近似方法已被开发出来以加快分析速度。然而,我们的分析表明,现有基于EBE的方法在关联检验和估计中存在的偏差仍然是一个问题。我们提出了一种极其快速且无偏差的方法(EBE的同时校正,SCEBE),该方法可以校正朴素EBE方法中的偏差,并提供无偏差的P值和效应大小估计。通过将其应用于阿尔茨海默病神经影像学倡议数据(包含6414695个单核苷酸多态性),我们证明SCEBE可以高效地对纵向结果进行大规模GWAS,计算效率提高了近10000倍,计算时间从数月缩短至数分钟。SCEBE软件包和示例数据集可在https://github.com/Myuan2019/SCEBE获取。