Burrows Kimberley, Heiskala Anni, Bradfield Jonathan P, Balkhiyarova Zhanna, Ning Lijiao, Boissel Mathilde, Chan Yee-Ming, Froguel Philippe, Bonnefond Amelie, Hakonarson Hakon, Alves Alessander Couto, Lawlor Deborah A, Kaakinen Marika, Järvelin Marjo-Riitta, Grant Struan F A, Tilling Kate, Prokopenko Inga, Sebert Sylvain, Canouil Mickaël, Warrington Nicole M
MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, UK.
Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
medRxiv. 2024 Mar 16:2024.03.13.24304263. doi: 10.1101/2024.03.13.24304263.
Genetic effects on changes in human traits over time are understudied and may have important pathophysiological impact. We propose a framework that enables data quality control, implements mixed models to evaluate trajectories of change in traits, and estimates phenotypes to identify age-varying genetic effects in genome-wide association studies (GWASs). Using childhood body mass index (BMI) as an example, we included 71,336 participants from six cohorts and estimated the slope and area under the BMI curve within four time periods (infancy, early childhood, late childhood and adolescence) for each participant, in addition to the age and BMI at the adiposity peak and the adiposity rebound. GWAS on each of the estimated phenotypes identified 28 genome-wide significant variants at 13 loci across the 12 estimated phenotypes, one of which was novel (in and had not been previously associated with childhood or adult BMI. Genetic studies of changes in human traits over time could uncover novel biological mechanisms influencing quantitative traits.
随着时间推移,基因对人类性状变化的影响尚未得到充分研究,但其可能具有重要的病理生理影响。我们提出了一个框架,该框架能够进行数据质量控制,运用混合模型评估性状变化轨迹,并在全基因组关联研究(GWAS)中估计表型以识别随年龄变化的基因效应。以儿童期体重指数(BMI)为例,我们纳入了来自六个队列的71336名参与者,除了肥胖高峰和肥胖反弹时的年龄及BMI外,还为每位参与者估计了四个时间段(婴儿期、幼儿期、童年晚期和青春期)内BMI曲线的斜率和曲线下面积。对每个估计表型进行的GWAS在12个估计表型的13个位点上鉴定出28个全基因组显著变异,其中一个是新发现的(位于 ,此前未与儿童期或成人BMI相关联)。对人类性状随时间变化的基因研究可能会揭示影响数量性状的新生物学机制。