Zhuang Xiaowei, Xu Gang, Amei Amei, Cordes Dietmar, Wang Zuoheng, Oh Edwin C
Interdisciplinary Neuroscience PhD Program University of Nevada Las Vegas Las Vegas Nevada USA.
Laboratory of Neurogenetics and Precision Medicine University of Nevada, Las Vegas Las Vegas Nevada USA.
Alzheimers Dement (Amst). 2024 Jun 7;16(2):e12597. doi: 10.1002/dad2.12597. eCollection 2024 Apr-Jun.
The development and progression of Alzheimer's disease (AD) is a complex process, during which genetic influences on phenotypes may also change. Incorporating longitudinal phenotypes in genome-wide association studies (GWAS) could unmask these genetic loci.
We conducted a longitudinal GWAS using a varying coefficient test to identify age-dependent single nucleotide polymorphisms (SNPs) in AD. Data from 1877 Alzheimer's Neuroimaging Data Initiative participants, including impairment status and amyloid positron emission tomography (PET) scan standardized uptake value ratio (SUVR) scores, were analyzed using a retrospective varying coefficient mixed model association test (RVMMAT).
RVMMAT identified 244 SNPs with significant time-varying effects on AD impairment status, with 12 SNPs on chromosome 19 validated using National Alzheimer's Coordinating Center data. Age-stratified analyses showed these SNPs' effects peaked between 70 and 80 years. Additionally, 73 SNPs were linked to longitudinal amyloid accumulation changes. Pathway analyses implicated immune and neuroinflammation-related disruptions.
Our findings demonstrate that longitudinal GWAS models can uncover time-varying genetic signals in AD.
Identify time-varying genetic effects using a longitudinal GWAS model in AD.Illustrate age-dependent genetic effects on both diagnoses and amyloid accumulation.Replicate time-varying effect of APOE in a second dataset.
阿尔茨海默病(AD)的发生和发展是一个复杂的过程,在此过程中基因对表型的影响也可能发生变化。在全基因组关联研究(GWAS)中纳入纵向表型可能会揭示这些基因位点。
我们使用可变系数检验进行了一项纵向GWAS,以识别AD中年龄依赖性单核苷酸多态性(SNP)。使用回顾性可变系数混合模型关联检验(RVMMAT)分析了来自1877名阿尔茨海默病神经影像数据倡议参与者的数据,包括损伤状态和淀粉样蛋白正电子发射断层扫描(PET)标准化摄取值比率(SUVR)得分。
RVMMAT识别出244个对AD损伤状态有显著时变效应的SNP,其中19号染色体上的12个SNP使用国家阿尔茨海默病协调中心的数据进行了验证。年龄分层分析表明,这些SNP的效应在70至80岁之间达到峰值。此外,73个SNP与纵向淀粉样蛋白积累变化有关。通路分析涉及免疫和神经炎症相关的破坏。
我们的研究结果表明,纵向GWAS模型可以揭示AD中的时变遗传信号。
在AD中使用纵向GWAS模型识别时变遗传效应。说明年龄依赖性遗传效应在诊断和淀粉样蛋白积累方面的作用。在第二个数据集中复制APOE的时变效应。