Suppr超能文献

基于高光谱技术的松材线虫病早期监测研究进展。

Research Progress on the Early Monitoring of Pine Wilt Disease Using Hyperspectral Techniques.

机构信息

College of Engineering, South China Agricultural University, Guangzhou 510642, China.

Division of Citrus Machinery, China Agriculture Research System, Guangzhou 510642, China.

出版信息

Sensors (Basel). 2020 Jul 3;20(13):3729. doi: 10.3390/s20133729.

Abstract

Pine wilt disease (PWD) caused by pine wood nematode (PWN, ) originated in North America and has since spread to Asia and Europe. PWN is currently a quarantine object in 52 countries. In recent years, pine wilt disease has caused considerable economic losses to the pine forest production industry in China, as it is difficult to control. Thus, one of the key strategies for controlling pine wilt disease is to identify epidemic points as early as possible. The use of hyperspectral cameras mounted on drones is expected to enable PWD monitoring over large areas of forest, and hyperspectral images can reflect different stages of PWD. The trend of applying hyperspectral techniques to the monitoring of pine wilt disease is analyzed, and the corresponding strategies to address the existing technical problems are proposed, such as data collection of early warning stages, needs of using unmanned aerial vehicles (UAVs), and establishment of models after preprocessing.

摘要

松材线虫病(PWD)由松材线虫(PWN,Bursaphelenchus xylophilus)引起,起源于北美洲,现已传播至亚洲和欧洲。目前,PWN 已被 52 个国家列为检疫对象。近年来,松材线虫病给中国的松林生产产业造成了相当大的经济损失,因为它很难控制。因此,控制松材线虫病的关键策略之一是尽早识别疫区。在无人机上安装高光谱相机有望实现对大面积森林的松材线虫病监测,高光谱图像可以反映松材线虫病的不同阶段。分析了将高光谱技术应用于松材线虫病监测的趋势,并提出了相应的策略来解决现有技术问题,例如预警阶段的数据采集、对无人机的需求以及预处理后的模型建立。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/97cc/7374340/812f9df5889a/sensors-20-03729-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验