Suppr超能文献

利用可解释的三维深度学习对高光谱图像进行植物病害识别。

Plant disease identification using explainable 3D deep learning on hyperspectral images.

作者信息

Nagasubramanian Koushik, Jones Sarah, Singh Asheesh K, Sarkar Soumik, Singh Arti, Ganapathysubramanian Baskar

机构信息

1Department of Electrical and Computer Engineering, Iowa State University, Ames, IA USA.

2Department of Agronomy, Iowa State University, Ames, IA USA.

出版信息

Plant Methods. 2019 Aug 21;15:98. doi: 10.1186/s13007-019-0479-8. eCollection 2019.

Abstract

BACKGROUND

Hyperspectral imaging is emerging as a promising approach for plant disease identification. The large and possibly redundant information contained in hyperspectral data cubes makes deep learning based identification of plant diseases a natural fit. Here, we deploy a novel 3D deep convolutional neural network (DCNN) that directly assimilates the hyperspectral data. Furthermore, we interrogate the learnt model to produce physiologically meaningful explanations. We focus on an economically important disease, charcoal rot, which is a soil borne fungal disease that affects the yield of soybean crops worldwide.

RESULTS

Based on hyperspectral imaging of inoculated and mock-inoculated stem images, our 3D DCNN has a classification accuracy of 95.73% and an infected class F1 score of 0.87. Using the concept of a saliency map, we visualize the most sensitive pixel locations, and show that the spatial regions with visible disease symptoms are overwhelmingly chosen by the model for classification. We also find that the most sensitive wavelengths used by the model for classification are in the near infrared region (NIR), which is also the commonly used spectral range for determining the vegetative health of a plant.

CONCLUSION

The use of an explainable deep learning model not only provides high accuracy, but also provides physiological insight into model predictions, thus generating confidence in model predictions. These explained predictions lend themselves for eventual use in precision agriculture and research application using automated phenotyping platforms.

摘要

背景

高光谱成像正成为一种有前景的植物病害识别方法。高光谱数据立方体中包含的大量且可能冗余的信息使得基于深度学习的植物病害识别成为自然之选。在此,我们部署了一种直接吸收高光谱数据的新型三维深度卷积神经网络(DCNN)。此外,我们对学习到的模型进行探究以得出具有生理意义的解释。我们聚焦于一种具有经济重要性的病害——炭腐病,它是一种土传真菌病害,影响着全球大豆作物的产量。

结果

基于对接种和模拟接种茎图像的高光谱成像,我们的三维DCNN分类准确率为95.73%,感染类F1分数为0.87。利用显著性图的概念,我们可视化了最敏感的像素位置,并表明模型在分类时压倒性地选择了具有可见病害症状的空间区域。我们还发现,模型用于分类的最敏感波长位于近红外区域(NIR),这也是用于确定植物营养健康状况的常用光谱范围。

结论

使用可解释的深度学习模型不仅能提供高精度,还能为模型预测提供生理洞察,从而增强对模型预测的信心。这些经过解释的预测最终可用于精准农业以及使用自动化表型平台的研究应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ab8/6702735/39ace4d779ed/13007_2019_479_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验