Suppr超能文献

柳枝稷木质素生物合成的基因调控网络。

Gene regulatory networks for lignin biosynthesis in switchgrass (Panicum virgatum).

机构信息

BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX, USA.

BioEnergy Science Center (BESC), Oak Ridge National Laboratory, Oak Ridge, TN, USA.

出版信息

Plant Biotechnol J. 2019 Mar;17(3):580-593. doi: 10.1111/pbi.13000. Epub 2018 Sep 17.

Abstract

Cell wall recalcitrance is the major challenge to improving saccharification efficiency in converting lignocellulose into biofuels. However, information regarding the transcriptional regulation of secondary cell wall biogenesis remains poor in switchgrass (Panicum virgatum), which has been selected as a biofuel crop in the United States. In this study, we present a combination of computational and experimental approaches to develop gene regulatory networks for lignin formation in switchgrass. To screen transcription factors (TFs) involved in lignin biosynthesis, we developed a modified method to perform co-expression network analysis using 14 lignin biosynthesis genes as bait (target) genes. The switchgrass lignin co-expression network was further extended by adding 14 TFs identified in this study, and seven TFs identified in previous studies, as bait genes. Six TFs (PvMYB58/63, PvMYB42/85, PvMYB4, PvWRKY12, PvSND2 and PvSWN2) were targeted to generate overexpressing and/or down-regulated transgenic switchgrass lines. The alteration of lignin content, cell wall composition and/or plant growth in the transgenic plants supported the role of the TFs in controlling secondary wall formation. RNA-seq analysis of four of the transgenic switchgrass lines revealed downstream target genes of the secondary wall-related TFs and crosstalk with other biological pathways. In vitro transactivation assays further confirmed the regulation of specific lignin pathway genes by four of the TFs. Our meta-analysis provides a hierarchical network of TFs and their potential target genes for future manipulation of secondary cell wall formation for lignin modification in switchgrass.

摘要

细胞壁顽固性是提高木质纤维素转化为生物燃料的糖化效率的主要挑战。然而,在美国被选为生物燃料作物的柳枝稷(Panicum virgatum)中,关于次生细胞壁生物发生的转录调控信息仍然很差。在这项研究中,我们结合计算和实验方法,开发了柳枝稷木质素形成的基因调控网络。为了筛选参与木质素生物合成的转录因子(TFs),我们开发了一种改良的方法,使用 14 个木质素生物合成基因作为诱饵(靶)基因进行共表达网络分析。通过将本研究中鉴定的 14 个 TF 和先前研究中鉴定的 7 个 TF 添加到柳枝稷木质素共表达网络中,进一步扩展了柳枝稷木质素共表达网络。将 6 个 TF(PvMYB58/63、PvMYB42/85、PvMYB4、PvWRKY12、PvSND2 和 PvSWN2)作为靶基因进行过表达和/或下调转基因柳枝稷系的构建。在转基因植物中木质素含量、细胞壁组成和/或植物生长的改变支持了 TFs 控制次生壁形成的作用。对其中 4 个转基因柳枝稷系的 RNA-seq 分析揭示了与次生壁相关的 TF 的下游靶基因以及与其他生物途径的相互作用。体外转录激活测定进一步证实了这四个 TF 对特定木质素途径基因的调控。我们的荟萃分析提供了一个 TF 及其潜在靶基因的层次网络,用于未来操纵柳枝稷次生细胞壁形成以进行木质素修饰。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b64/11386755/6b4c4375778c/PBI-17-580-g002.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验