Leibniz University Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, Hannover, 30419, Germany.
BMC Biol. 2024 Apr 29;22(1):99. doi: 10.1186/s12915-024-01895-0.
TALE-derived DddA-based cytosine base editors (TALE-DdCBEs) can perform efficient base editing of mitochondria and chloroplast genomes. They use transcription activator-like effector (TALE) arrays as programmable DNA-binding domains and a split version of the double-strand DNA cytidine deaminase (DddA) to catalyze C•G-to-T•A editing. This technology has not been optimized for use in plant cells.
To systematically investigate TALE-DdCBE architectures and editing rules, we established a β-glucuronidase reporter for transient assays in Nicotiana benthamiana. We show that TALE-DdCBEs function with distinct spacer lengths between the DNA-binding sites of their two TALE parts. Compared to canonical DddA, TALE-DdCBEs containing evolved DddA variants (DddA6 or DddA11) showed a significant improvement in editing efficiency in Nicotiana benthamiana and rice. Moreover, TALE-DdCBEs containing DddA11 have broader sequence compatibility for non-TC target editing. We have successfully regenerated rice with C•G-to-T•A conversions in their chloroplast genome, as well as N. benthamiana with C•G-to-T•A editing in the nuclear genome using TALE-DdCBE. We also found that the spontaneous assembly of split DddA halves can cause undesired editing by TALE-DdCBEs in plants.
Altogether, our results refined the targeting scope of TALE-DdCBEs and successfully applied them to target the chloroplast and nuclear genomes. Our study expands the base editing toolbox in plants and further defines parameters to optimize TALE-DdCBEs for high-fidelity crop improvement.
基于 TALE 的 DddA 碱基编辑器(TALE-DdCBEs)可高效实现线粒体和叶绿体基因组的碱基编辑。它们将转录激活因子样效应物(TALE)阵列作为可编程 DNA 结合域,以及双链 DNA 胞嘧啶脱氨酶(DddA)的分裂版本,用于催化 C•G 到 T•A 编辑。该技术尚未针对植物细胞进行优化。
为了系统研究 TALE-DdCBE 结构和编辑规则,我们在黄花烟中建立了一个瞬时测定的 β-葡萄糖醛酸酶报告基因。我们表明,TALE-DdCBE 可以在其两个 TALE 部分的 DNA 结合位点之间具有不同的间隔长度起作用。与经典的 DddA 相比,包含进化的 DddA 变体(DddA6 或 DddA11)的 TALE-DdCBE 在黄花烟和水稻中的编辑效率有显著提高。此外,包含 DddA11 的 TALE-DdCBE 对非 TC 靶标编辑具有更广泛的序列兼容性。我们成功地在水稻的叶绿体基因组中产生了 C•G 到 T•A 的转换,以及在黄花烟的核基因组中产生了 C•G 到 T•A 的编辑,均使用 TALE-DdCBE。我们还发现分裂的 DddA 两半的自发组装可能会导致 TALE-DdCBE 在植物中引起非预期的编辑。
总之,我们的研究结果细化了 TALE-DdCBE 的靶向范围,并成功地将其应用于靶向叶绿体和核基因组。我们的研究扩展了植物中的碱基编辑工具包,并进一步确定了优化 TALE-DdCBE 以实现高保真度作物改良的参数。