Suppr超能文献

用于下游分子检测的细菌微流控富集与磁性聚合物表面的非接触式裂解相结合。

Microfluidic enrichment of bacteria coupled to contact-free lysis on a magnetic polymer surface for downstream molecular detection.

作者信息

Burklund Alison, Petryk James D, Hoopes P Jack, Zhang John X J

机构信息

Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, USA.

Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire 03755, USA.

出版信息

Biomicrofluidics. 2020 Jun 23;14(3):034115. doi: 10.1063/5.0011908. eCollection 2020 May.

Abstract

We report on a microsystem that couples high-throughput bacterial immunomagnetic capture to contact-free cell lysis using an alternating current magnetic field (AMF) to enable downstream molecular characterization of bacterial nucleic acids. Traditional methods for cell lysis rely on either dilutive chemical methods, expensive biological reagents, or imprecise physical methods. We present a microchip with a magnetic polymer substrate (Mag-Polymer microchip), which enables highly controlled, on-chip heating of biological targets following exposure to an AMF. First, we present a theoretical framework for the quantitation of power generation for single-domain magnetic nanoparticles embedded in a polymer matrix. Next, we demonstrate successful bacterial DNA recovery by coupling (1) high-throughput, sensitive microfluidic immunomagnetic capture of bacteria to (2) on-chip, contact-free bacterial lysis using an AMF. The bacterial capture efficiency exceeded 76% at 50 ml/h at cell loads as low as ∼10 CFU/ml, and intact DNA was successfully recovered at starting bacterial concentrations as low as ∼1000 CFU/ml. Using the presented methodology, cell lysis becomes non-dilutive, temperature is precisely controlled, and potential contamination risks are eliminated. This workflow and substrate modification could be easily integrated in a range of micro-scale diagnostic systems for infectious disease.

摘要

我们报道了一种微系统,该系统将高通量细菌免疫磁捕获与使用交变电流磁场(AMF)的非接触式细胞裂解相结合,以实现细菌核酸的下游分子表征。传统的细胞裂解方法要么依赖于稀释化学方法、昂贵的生物试剂,要么依赖于不精确的物理方法。我们展示了一种具有磁性聚合物基质的微芯片(磁聚合物微芯片),在暴露于AMF后,它能够对生物靶点进行高度可控的芯片上加热。首先,我们提出了一个理论框架,用于定量嵌入聚合物基质中的单畴磁性纳米颗粒的发电情况。接下来,我们通过将(1)高通量、灵敏的微流控细菌免疫磁捕获与(2)使用AMF的芯片上非接触式细菌裂解相结合,证明了成功回收细菌DNA。在细胞负载低至约10 CFU/ml的情况下,流速为50 ml/h时细菌捕获效率超过76%,在起始细菌浓度低至约1000 CFU/ml时成功回收了完整的DNA。使用所提出的方法,细胞裂解变得无需稀释,温度得到精确控制,并且消除了潜在的污染风险。这种工作流程和底物修饰可以很容易地集成到一系列用于传染病的微型诊断系统中。

相似文献

1
Microfluidic enrichment of bacteria coupled to contact-free lysis on a magnetic polymer surface for downstream molecular detection.
Biomicrofluidics. 2020 Jun 23;14(3):034115. doi: 10.1063/5.0011908. eCollection 2020 May.
2
Polymer-based microfluidic chip for rapid and efficient immunomagnetic capture and release of Listeria monocytogenes.
Lab Chip. 2015 Oct 21;15(20):3994-4007. doi: 10.1039/c5lc00852b. Epub 2015 Sep 8.
4
Performance Evaluation of Fast Microfluidic Thermal Lysis of Bacteria for Diagnostic Sample Preparation.
Diagnostics (Basel). 2013 Jan 17;3(1):105-16. doi: 10.3390/diagnostics3010105.
5
An integratable microfluidic cartridge for forensic swab samples lysis.
Forensic Sci Int Genet. 2014 Jan;8(1):147-58. doi: 10.1016/j.fsigen.2013.08.012. Epub 2013 Sep 8.
6
Rapidly prototyped multi-scale electrodes to minimize the voltage requirements for bacterial cell lysis.
Analyst. 2015 Mar 7;140(5):1599-608. doi: 10.1039/c4an02150a. Epub 2015 Jan 19.
7
Integration of nanoparticle cell lysis and microchip PCR for one-step rapid detection of bacteria.
Biomed Microdevices. 2012 Apr;14(2):337-46. doi: 10.1007/s10544-011-9610-y.
9
Electrolysis of Bacteria Based on Microfluidic Technology.
Micromachines (Basel). 2023 Jan 5;14(1):144. doi: 10.3390/mi14010144.
10
Magnetic particles for in vitro molecular diagnosis: From sample preparation to integration into microsystems.
Colloids Surf B Biointerfaces. 2017 Oct 1;158:1-8. doi: 10.1016/j.colsurfb.2017.06.024. Epub 2017 Jun 22.

引用本文的文献

1
Magnetic nanoparticles fabricated/integrated with microfluidics for biological applications: A review.
Biomed Microdevices. 2024 Jan 25;26(1):13. doi: 10.1007/s10544-023-00693-9.
2
Advances in the use of nanomaterials for nucleic acid detection in point-of-care testing devices: A review.
Front Bioeng Biotechnol. 2022 Oct 13;10:1020444. doi: 10.3389/fbioe.2022.1020444. eCollection 2022.
3
Review of Microfluidic Methods for Cellular Lysis.
Micromachines (Basel). 2021 Apr 28;12(5):498. doi: 10.3390/mi12050498.

本文引用的文献

1
Advances in diagnostic microfluidics.
Adv Clin Chem. 2020;95:1-72. doi: 10.1016/bs.acc.2019.08.001. Epub 2019 Oct 15.
2
Inductive Thermal Effect of Ferrite Magnetic Nanoparticles.
Materials (Basel). 2019 Sep 30;12(19):3208. doi: 10.3390/ma12193208.
3
Microfluidics-Based Organism Isolation from Whole Blood: An Emerging Tool for Bloodstream Infection Diagnosis.
Ann Biomed Eng. 2019 Jul;47(7):1657-1674. doi: 10.1007/s10439-019-02256-7. Epub 2019 Apr 12.
5
Biologically Targeted Magnetic Hyperthermia: Potential and Limitations.
Front Pharmacol. 2018 Aug 2;9:831. doi: 10.3389/fphar.2018.00831. eCollection 2018.
6
Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation.
Mol Pharm. 2018 Sep 4;15(9):3717-3722. doi: 10.1021/acs.molpharmaceut.8b00126. Epub 2018 Apr 12.
7
Emerging Technologies for Molecular Diagnosis of Sepsis.
Clin Microbiol Rev. 2018 Feb 28;31(2). doi: 10.1128/CMR.00089-17. Print 2018 Apr.
8
Methods for the detection and identification of pathogenic bacteria: past, present, and future.
Chem Soc Rev. 2017 Aug 14;46(16):4818-4832. doi: 10.1039/c6cs00693k.
9
Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.
ACS Nano. 2017 Jul 25;11(7):6808-6816. doi: 10.1021/acsnano.7b01762. Epub 2017 Jun 21.
10
Rapid separation of bacteria from blood-review and outlook.
Biotechnol Prog. 2016 Jul 8;32(4):823-39. doi: 10.1002/btpr.2299. Epub 2016 Jun 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验