文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

尺寸相关的磁性氧化铁纳米粒子加热。

Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.

机构信息

Department of Bioengineering, Rice University , Houston, Texas 77005, United States.

Department of Biomedical Engineering, Georgia Institute of Technology and Emory University , Atlanta, Georgia 30332, United States.

出版信息

ACS Nano. 2017 Jul 25;11(7):6808-6816. doi: 10.1021/acsnano.7b01762. Epub 2017 Jun 21.


DOI:10.1021/acsnano.7b01762
PMID:28625045
Abstract

The ability to generate heat under an alternating magnetic field (AMF) makes magnetic iron oxide nanoparticles (MIONs) an ideal heat source for biomedical applications including cancer thermoablative therapy, tissue preservation, and remote control of cell function. However, there is a lack of quantitative understanding of the mechanisms governing heat generation of MIONs, and the optimal nanoparticle size for magnetic fluid heating (MFH) applications. Here, we show that MIONs with large sizes (>20 nm) have a specific absorption rate (SAR) significantly higher than that predicted by the widely used linear theory of MFH. The heating efficiency of MIONs in both the superparamagnetic and ferromagnetic regimes increased with size, which can be accurately characterized with a modified dynamic hysteresis model. In particular, the 40 nm ferromagnetic nanoparticles have an SAR value approaching the theoretical limit under a clinically relevant AMF. An in vivo study further demonstrated that the 40 nm MIONs could effectively heat tumor tissues at a minimal dose. Our experimental results and theoretical analysis on nanoparticle heating offer important insight into the rationale design of MION-based MFH for therapeutic applications.

摘要

在交变磁场(AMF)下产生热量的能力使磁性氧化铁纳米粒子(MIONs)成为生物医学应用的理想热源,包括癌症热消融治疗、组织保存和细胞功能的远程控制。然而,对于控制 MIONs 发热的机制以及用于磁流体加热(MFH)应用的最佳纳米颗粒尺寸,缺乏定量的理解。在这里,我们表明,尺寸较大(>20nm)的 MIONs 的比吸收率(SAR)明显高于 MFH 的广泛使用的线性理论所预测的值。在超顺磁和铁磁状态下,MIONs 的加热效率随尺寸的增加而增加,这可以用改进的动态磁滞模型进行准确描述。特别是,在临床相关的 AMF 下,40nm 的铁磁纳米颗粒具有接近理论极限的 SAR 值。体内研究进一步证明,40nm 的 MIONs 可以以最小的剂量有效地加热肿瘤组织。我们对纳米颗粒加热的实验结果和理论分析为基于 MION 的 MFH 在治疗应用中的合理设计提供了重要的见解。

相似文献

[1]
Size-Dependent Heating of Magnetic Iron Oxide Nanoparticles.

ACS Nano. 2017-6-21

[2]
Size-dependent magnetic and inductive heating properties of FeO nanoparticles: scaling laws across the superparamagnetic size.

Phys Chem Chem Phys. 2018-5-9

[3]
Structural perspective on revealing heat dissipation behavior of CoFeO-Pd nanohybrids: great promise for magnetic fluid hyperthermia.

Phys Chem Chem Phys. 2020-12-7

[4]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[5]
Iron Oxide Nanoparticle Based Contrast Agents for Magnetic Resonance Imaging.

Mol Pharm. 2017-5-1

[6]
Magnetic Iron Oxide Nanoparticles for Biomedical Applications.

Curr Opin Biomed Eng. 2021-12

[7]
Size dependent heat generation of magnetite nanoparticles under AC magnetic field for cancer therapy.

Biomagn Res Technol. 2008-10-20

[8]
Maghemite (γ-FeO) and γ-FeO-TiO Nanoparticles for Magnetic Hyperthermia Applications: Synthesis, Characterization and Heating Efficiency.

Materials (Basel). 2021-9-30

[9]
Photo-fluorescent and magnetic properties of iron oxide nanoparticles for biomedical applications.

Nanoscale. 2015-5-14

[10]
Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.

Biomed Eng Online. 2017-3-23

引用本文的文献

[1]
Precision-Engineered Cobalt-doped Iron Oxide Nanoparticles: From Octahedron Seeds to Cubical Bipyramids for Enhanced Magnetic Hyperthermia.

Adv Funct Mater. 2025-3-17

[2]
Control of Magnetic Properties of Liquid-Crystalline Dendron-Modified FePt Nanoparticles through Thermal Phase Transition for Tunable Magnetic Materials.

ACS Appl Nano Mater. 2025-7-26

[3]
Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery.

Bioact Mater. 2025-7-26

[4]
Implication of Bimodal Magnetic Resonance and Fluorescence Imaging Probes in Advanced Healthcare: Enhancing Disease Diagnosis and Targeted Therapy.

Int J Nanomedicine. 2025-7-29

[5]
7-nm Mn ZnFeO superparamagnetic iron oxide nanoparticle (SPION): a high-performance theranostic for MRI and hyperthermia applications.

Theranostics. 2025-2-10

[6]
Fundamentals and Applications of Dual-Frequency Magnetic Particle Spectroscopy: Review for Biomedicine and Materials Characterization.

Adv Sci (Weinh). 2025-4

[7]
Advances in magnetic nanoparticles for molecular medicine.

Chem Commun (Camb). 2025-2-13

[8]
Recent advancements and clinical aspects of engineered iron oxide nanoplatforms for magnetic hyperthermia-induced cancer therapy.

Mater Today Bio. 2024-11-28

[9]
Magnetic Iron Oxide Nanoparticles Enhance Exosome Production by Upregulating Exosome Transport and Secretion Pathways.

ACS Appl Mater Interfaces. 2024-12-11

[10]
Surface Engineering of Magnetic Iron Oxide Nanoparticles for Breast Cancer Diagnostics and Drug Delivery.

Int J Nanomedicine. 2024

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索