Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.
Center for Integrated Protein Science Munich at the Department of Chemistry, Technical University of Munich, Lichtenbergstrasse 4, D85748 Garching, Germany.
J Am Chem Soc. 2020 Aug 12;142(32):13718-13728. doi: 10.1021/jacs.0c02789. Epub 2020 Jul 30.
The respiratory complex I transduces redox energy into an electrochemical proton gradient in aerobic respiratory chains, powering energy-requiring processes in the cell. However, despite recently resolved molecular structures, the mechanism of this gigantic enzyme remains poorly understood. By combining large-scale quantum and classical simulations with site-directed mutagenesis and biophysical experiments, we show here how the conformational state of buried ion-pairs and water molecules control the protonation dynamics in the membrane domain of complex I and establish evolutionary conserved long-range coupling elements. We suggest that an electrostatic wave propagates in forward and reverse directions across the 200 Å long membrane domain during enzyme turnover, without significant dissipation of energy. Our findings demonstrate molecular principles that enable efficient long-range proton-electron coupling (PCET) and how perturbation of this PCET machinery may lead to development of mitochondrial disease.
呼吸复合物 I 将氧化还原能量转化为需氧呼吸链中的电化学质子梯度,为细胞内的能量需求过程提供动力。然而,尽管最近已经解析了其分子结构,但该巨型酶的作用机制仍知之甚少。通过将大规模的量子和经典模拟与定点突变和生物物理实验相结合,我们在这里展示了埋藏的离子对和水分子的构象状态如何控制复合物 I 膜结构域中的质子化动力学,并确定了进化保守的长程偶联元件。我们认为,在酶周转过程中,静电波在 200 Å 长的膜结构域中向前和向后传播,而不会显著耗散能量。我们的研究结果表明,这些分子原理使有效的长程质子-电子偶联(PCET)成为可能,以及这种 PCET 机制的干扰如何导致线粒体疾病的发展。