Suppr超能文献

芯片上的人工智能。

AI on a chip.

作者信息

Isozaki Akihiro, Harmon Jeffrey, Zhou Yuqi, Li Shuai, Nakagawa Yuta, Hayashi Mika, Mikami Hideharu, Lei Cheng, Goda Keisuke

机构信息

Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan.

出版信息

Lab Chip. 2020 Aug 26;20(17):3074-3090. doi: 10.1039/d0lc00521e.

Abstract

Artificial intelligence (AI) has dramatically changed the landscape of science, industry, defence, and medicine in the last several years. Supported by considerably enhanced computational power and cloud storage, the field of AI has shifted from mostly theoretical studies in the discipline of computer science to diverse real-life applications such as drug design, material discovery, speech recognition, self-driving cars, advertising, finance, medical imaging, and astronomical observation, where AI-produced outcomes have been proven to be comparable or even superior to the performance of human experts. In these applications, what is essentially important for the development of AI is the data needed for machine learning. Despite its prominent importance, the very first process of the AI development, namely data collection and data preparation, is typically the most laborious task and is often a limiting factor of constructing functional AI algorithms. Lab-on-a-chip technology, in particular microfluidics, is a powerful platform for both the construction and implementation of AI in a large-scale, cost-effective, high-throughput, automated, and multiplexed manner, thereby overcoming the above bottleneck. On this platform, high-throughput imaging is a critical tool as it can generate high-content information (e.g., size, shape, structure, composition, interaction) of objects on a large scale. High-throughput imaging can also be paired with sorting and DNA/RNA sequencing to conduct a massive survey of phenotype-genotype relations whose data is too complex to analyze with traditional computational tools, but is analyzable with the power of AI. In addition to its function as a data provider, lab-on-a-chip technology can also be employed to implement the developed AI for accurate identification, characterization, classification, and prediction of objects in mixed, heterogeneous, or unknown samples. In this review article, motivated by the excellent synergy between AI and lab-on-a-chip technology, we outline fundamental elements, recent advances, future challenges, and emerging opportunities of AI with lab-on-a-chip technology or "AI on a chip" for short.

摘要

在过去几年中,人工智能(AI)极大地改变了科学、工业、国防和医学领域的格局。在大幅增强的计算能力和云存储的支持下,人工智能领域已从计算机科学学科中大多是理论性的研究,转向药物设计、材料发现、语音识别、自动驾驶汽车、广告、金融、医学成像和天文观测等各种现实生活应用,在这些应用中,人工智能产生的结果已被证明与人类专家的表现相当甚至更优。在这些应用中,对于人工智能发展至关重要的是机器学习所需的数据。尽管其重要性显著,但人工智能发展的第一个过程,即数据收集和数据准备,通常是最费力的任务,并且常常是构建功能性人工智能算法的限制因素。芯片实验室技术,特别是微流控技术,是一个强大的平台,能够以大规模、经济高效、高通量、自动化和多重化的方式构建和实施人工智能,从而克服上述瓶颈。在这个平台上,高通量成像至关重要,因为它可以大规模生成物体的高内涵信息(例如大小、形状、结构、组成、相互作用)。高通量成像还可以与分选以及DNA/RNA测序相结合,对表型 - 基因型关系进行大规模调查,其数据过于复杂,无法用传统计算工具分析,但可借助人工智能的力量进行分析。除了作为数据提供者的功能外,芯片实验室技术还可用于实施已开发的人工智能,以对混合、异质或未知样本中的物体进行准确识别、表征、分类和预测。在这篇综述文章中,受人工智能与芯片实验室技术之间出色协同作用的启发,我们概述了人工智能与芯片实验室技术(简称为“芯片上的人工智能”)的基本要素、最新进展、未来挑战和新出现的机遇。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验