Sanchez Théophile, Cury Jean, Charpiat Guillaume, Jay Flora
Laboratoire de Recherche en Informatique, CNRS UMR 8623, Université Paris-Saclay, Orsay, France.
Mol Ecol Resour. 2021 Nov;21(8):2645-2660. doi: 10.1111/1755-0998.13224. Epub 2020 Jul 25.
For the past decades, simulation-based likelihood-free inference methods have enabled researchers to address numerous population genetics problems. As the richness and amount of simulated and real genetic data keep increasing, the field has a strong opportunity to tackle tasks that current methods hardly solve. However, high data dimensionality forces most methods to summarize large genomic data sets into a relatively small number of handcrafted features (summary statistics). Here, we propose an alternative to summary statistics, based on the automatic extraction of relevant information using deep learning techniques. Specifically, we design artificial neural networks (ANNs) that take as input single nucleotide polymorphic sites (SNPs) found in individuals sampled from a single population and infer the past effective population size history. First, we provide guidelines to construct artificial neural networks that comply with the intrinsic properties of SNP data such as invariance to permutation of haplotypes, long scale interactions between SNPs and variable genomic length. Thanks to a Bayesian hyperparameter optimization procedure, we evaluate the performance of multiple networks and compare them to well-established methods like Approximate Bayesian Computation (ABC). Even without the expert knowledge of summary statistics, our approach compares fairly well to an ABC approach based on handcrafted features. Furthermore, we show that combining deep learning and ABC can improve performance while taking advantage of both frameworks. Finally, we apply our approach to reconstruct the effective population size history of cattle breed populations.
在过去几十年中,基于模拟的无似然推断方法使研究人员能够解决众多群体遗传学问题。随着模拟和真实遗传数据的丰富度和数量不断增加,该领域有很大机会解决当前方法难以解决的任务。然而,高数据维度迫使大多数方法将大型基因组数据集总结为相对较少的手工制作特征(汇总统计量)。在此,我们基于使用深度学习技术自动提取相关信息,提出了一种替代汇总统计量的方法。具体而言,我们设计了人工神经网络(ANN),将从单一群体中采样的个体中发现的单核苷酸多态性位点(SNP)作为输入,并推断过去的有效种群大小历史。首先,我们提供了构建符合SNP数据内在特性的人工神经网络的指导方针,例如单倍型排列不变性、SNP之间的长尺度相互作用以及可变基因组长度。通过贝叶斯超参数优化程序,我们评估了多个网络的性能,并将它们与近似贝叶斯计算(ABC)等成熟方法进行比较。即使没有汇总统计量的专业知识,我们的方法与基于手工制作特征的ABC方法相比也相当不错。此外,我们表明结合深度学习和ABC可以在利用两个框架优势的同时提高性能。最后,我们应用我们的方法重建牛品种群体的有效种群大小历史。