Surgical & Orthopedic Research Laboratories, Prince of Wales Clinical, UNSW Sydney, Level 1, Clinical Sciences Building, Gate 6, Avoca St, Sydney, NSW 2031, Australia.
SeaSpine, San Diego, USA.
Spine J. 2020 Nov;20(11):1876-1886. doi: 10.1016/j.spinee.2020.06.023. Epub 2020 Jul 6.
The interface and interactions between an interbody cage, graft material, and host bone can all participate in the fusion. Shortcomings of Poly(aryl-ether-ether-ketone) interbody cages have been addressed with novel titanium surfaces. Titanium surfaces paired with macroscale topography features on the endplates and within the aperture may provide additional benefits.
To evaluate the influence of cage design parameters on interbody fusion in a large animal preclinical model.
STUDY DESIGN/SETTING: A comparative preclinical large animal model was performed to evaluate how macroscale topography features of an interbody cage can facilitate early integration between the host bone, graft material, and interbody cage and these effects on biomechanical stability and fusion.
Forty single level interbody fusions (L4-L5) using iliac crest autograft and bilateral pedicle screw fixation were performed in adult sheep to evaluate the effect of undercut macrostructure topography features of an interbody cage on the endplates and within the aperture. Fusions were evaluated at 6 and 12 weeks (n=10 per group) using radiography, microcomputed tomography, biomechanical integrity, and histology endpoints.
The presence of the undercut macrostructures present on the endplates and within the aperture statistically improved biomechanical integrity at 6 and 12 weeks compared with controls. Microcomputed tomography and histology demonstrated bony interdigitation within the endplate and aperture features contributing to the improvement in properties.
The present study demonstrates that Poly(aryl-ether-ether-ketone) implants with titanium surfaces can be augmented by undercut macrostructures present on the endplates and within the aperture to provide opportunities for a series of anchoring points that, with new bone formation and remodelling, result in earlier and improved biomechanical integrity of the treated level.
This preclinical study showed that bone interdigitation with the undercut macrostructures present on the endplates and within the aperture resulted in improved fusion and biomechanical stability in a clinically relevant spinal fusion model. Future clinical study is warranted to evaluate such implants' performance in humans.
椎间笼、移植物材料和宿主骨之间的界面和相互作用都可以参与融合。新型钛表面解决了聚芳醚醚酮椎间笼的缺点。钛表面与终板和孔内的宏观形貌特征相结合,可能会提供额外的益处。
在大型动物临床前模型中评估椎间笼设计参数对椎间融合的影响。
研究设计/设置:进行了一项比较性的临床前大型动物模型研究,以评估椎间笼的宏观形貌特征如何促进宿主骨、移植物材料和椎间笼之间的早期整合,以及这些特征对生物力学稳定性和融合的影响。
在成年绵羊中进行了 40 例单节段椎间融合术(L4-L5),使用髂嵴自体移植物和双侧椎弓根螺钉固定,以评估椎间笼终板和孔内的下切宏观结构形貌特征对融合的影响。在 6 周和 12 周(每组 10 例)时,通过影像学、微计算机断层扫描、生物力学完整性和组织学终点评估融合情况。
与对照组相比,终板和孔内存在下切宏观结构的情况下,生物力学完整性在 6 周和 12 周时均得到显著提高。微计算机断层扫描和组织学显示,终板和孔内特征处有骨嵌入,这有助于改善性能。
本研究表明,具有钛表面的聚芳醚醚酮植入物可以通过在终板和孔内增加下切宏观结构来增强,为一系列锚固点提供机会,随着新骨形成和重塑,可早期改善治疗节段的生物力学完整性。
本临床前研究表明,终板和孔内的下切宏观结构处的骨嵌入可改善临床相关脊柱融合模型中的融合和生物力学稳定性。需要进行未来的临床研究来评估此类植入物在人类中的性能。