Spine Pain Begone Clinic, 2833 Babcock Rd Suite 306, San Antonio, TX 78229, USA.
NuVasive, 7475 Lusk Blvd., San Diego, CA 92129, USA.
Spine J. 2022 Jun;22(6):1028-1037. doi: 10.1016/j.spinee.2022.01.003. Epub 2022 Jan 10.
Cage subsidence remains a serious complication after spinal fusion surgery. Novel porous designs in the cage body or endplate offer attractive options to improve subsidence and osseointegration performance.
To elucidate the relative contribution of a porous design in each of the two major domains (body and endplates) to cage stiffness and subsidence performance, using standardized mechanical testing methods, and to analyze the fusion progression via an established ovine interbody fusion model to support the mechanical testing findings.
STUDY DESIGN/SETTING: A comparative preclinical study using standardized mechanical testing and established animal model.
To isolate the subsidence performance contributed by each porous cage design feature, namely the stress-optimized body lattice (vs. a solid body) and microporous endplates (vs. smooth endplates), four groups of cages (two-by-two combination of these two features) were tested in: (1) static axial compression of the cage (per ASTM F2077) and (2) static subsidence (per ASTM F2267). To evaluate the progression of fusion, titanium cages were created with a microporous endplate and internal lattice architecture analogous to commercial implants used in subsidence testing and implanted in an endplate-sparing, ovine intervertebral body fusion model.
The cage stiffness was reduced by 16.7% by the porous body lattice, and by 16.6% by the microporous endplates. The porous titanium cage with both porous features showed the lowest stiffness with a value of 40.4±0.3 kN/mm (Mean±SEM) and a block stiffness of 1976.8±27.4 N/mm for subsidence. The body lattice showed no significant impact on the block stiffness (1.4% reduction), while the microporous endplates decreased the block stiffness significantly by 24.9% (p<.0001). All segments implanted with porous titanium cages were deemed rigidly fused by manual palpation, except one at 12 weeks, consistent with robotic ROM testing and radiographic and histologic observations. A reduction in ROM was noted from 12 to 26 weeks (4.1±1.6° to 2.2±1.4° in lateral bending, p<.05; 2.1±0.6° to 1.5±0.3° in axial rotation, p<.05); and 3.3±1.6° to 1.9±1.2° in flexion extension, p=.07). Bone in the available void improved with time in the central aperture (54±35% to 83±13%, p<.05) and porous cage structure (19±26% to 37±21%, p=.15).
Body lattice and microporous endplates features can effectively reduce the cage stiffness, therefore reducing the risk of stress shielding and promoting early fusion. While body lattice showed no impact on block stiffness and the microporous endplates reduced the block stiffness, a titanium cage with microporous endplates and internal lattice supported bone ingrowth and segmental mechanical stability as early as 12 weeks in ovine interbody fusion.
Porous titanium cage architecture can offer an attractive solution to increase the available space for bone ingrowth and bridging to support successful spinal fusion while mitigating risks of increased subsidence.
cage 沉降仍然是脊柱融合手术后的一个严重并发症。 cage 体部或终板的新型多孔设计为改善沉降和骨整合性能提供了有吸引力的选择。
使用标准化的机械测试方法阐明多孔设计在两个主要领域(体部和终板)中对 cage 刚度和沉降性能的相对贡献,并通过已建立的羊椎间融合模型分析融合进展,以支持机械测试结果。
研究设计/设置: 使用标准化机械测试和已建立动物模型的比较临床前研究。
为了分离每个多孔 cage 设计特征对沉降性能的贡献,即优化的体部晶格(与实体体部相比)和微孔终板(与光滑终板相比),对四种 cage 进行了测试:(1)根据 ASTM F2077 进行 cage 的静态轴向压缩,和(2)根据 ASTM F2267 进行静态沉降测试。为了评估融合的进展,制造了具有微孔终板和类似于用于沉降测试的商业植入物的内部晶格结构的多孔钛 cage,并将其植入到保留终板的羊椎间融合模型中。
多孔体部晶格使 cage 刚度降低了 16.7%,微孔终板使 cage 刚度降低了 16.6%。具有两种多孔特征的多孔钛 cage 表现出最低的刚度,其值为 40.4±0.3 kN/mm(平均值±SEM)和 1976.8±27.4 N/mm 的块状刚度用于沉降。体部晶格对块状刚度没有显著影响(降低 1.4%),而微孔终板显著降低了块状刚度 24.9%(p<.0001)。除了在 12 周时有一个节段外,所有植入多孔钛 cage 的节段均通过手动触诊被认为是刚性融合的,这与机器人 ROM 测试以及影像学和组织学观察结果一致。从 12 周到 26 周,ROM 减少(侧向弯曲时为 4.1±1.6°至 2.2±1.4°,p<.05;轴向旋转时为 2.1±0.6°至 1.5±0.3°,p<.05);从 3.3±1.6°到 1.9±1.2°(屈伸),p=.07)。中央孔中的骨在可用的空隙中随时间增加而改善(54±35%至 83±13%,p<.05)和多孔 cage 结构(19±26%至 37±21%,p=.15)。
体部晶格和微孔终板特征可有效降低 cage 刚度,从而降低应力屏蔽的风险并促进早期融合。虽然体部晶格对块状刚度没有影响,而微孔终板降低了块状刚度,但在羊椎间融合中,具有微孔终板和内部晶格的多孔钛 cage 早在 12 周就支持骨长入和节段机械稳定性。
多孔钛 cage 结构可以提供一种有吸引力的解决方案,增加骨长入和桥接的可用空间,以支持成功的脊柱融合,同时降低沉降增加的风险。