Suppr超能文献

基于视频的帕金森病运动参数与 MDS-UPDRS III 一致的自动评估。

Video-Based Automated Assessment of Movement Parameters Consistent with MDS-UPDRS III in Parkinson's Disease.

机构信息

Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS, INSERM, Université PSL, Paris, France.

INRIA Paris, MAMBA (Modelling and Analysis in Medical and Biological Applications), Paris, France.

出版信息

J Parkinsons Dis. 2022;12(7):2211-2222. doi: 10.3233/JPD-223445.

Abstract

BACKGROUND

Among motor symptoms of Parkinson's disease (PD), including rigidity and resting tremor, bradykinesia is a mandatory feature to define the parkinsonian syndrome. MDS-UPDRS III is the worldwide reference scale to evaluate the parkinsonian motor impairment, especially bradykinesia. However, MDS-UPDRS III is an agent-based score making reproducible measurements and follow-up challenging.

OBJECTIVE

Using a deep learning approach, we developed a tool to compute an objective score of bradykinesia based on the guidelines of the gold-standard MDS-UPDRS III.

METHODS

We adapted and applied two deep learning algorithms to detect a two-dimensional (2D) skeleton of the hand composed of 21 predefined points, and transposed it into a three-dimensional (3D) skeleton for a large database of videos of parkinsonian patients performing MDS-UPDRS III protocols acquired in the Movement Disorder unit of Avicenne University Hospital.

RESULTS

We developed a 2D and 3D automated analysis tool to study the evolution of several key parameters during the protocol repetitions of the MDS-UPDRS III. Scores from 2D automated analysis showed a significant correlation with gold-standard ratings of MDS-UPDRS III, measured with coefficients of determination for the tapping (0.609) and hand movements (0.701) protocols using decision tree algorithms. The individual correlations of the different parameters measured with MDS-UPDRS III scores carry meaningful information and are consistent with MDS-UPDRS III guidelines.

CONCLUSION

We developed a deep learning-based tool to precisely analyze movement parameters allowing to reliably score bradykinesia for parkinsonian patients in a MDS-UPDRS manner.

摘要

背景

在帕金森病(PD)的运动症状中,包括僵硬和静止性震颤,运动迟缓是定义帕金森综合征的强制性特征。MDS-UPDRS III 是评估帕金森运动障碍的全球参考量表,特别是运动迟缓。然而,MDS-UPDRS III 是一种基于代理的评分方法,使得可重复性测量和随访具有挑战性。

目的

我们使用深度学习方法开发了一种工具,根据 MDS-UPDRS III 的金标准指南计算运动迟缓的客观评分。

方法

我们改编并应用了两种深度学习算法来检测由 21 个预定义点组成的手部二维(2D)骨架,并将其转换为帕金森病患者在阿维森纳大学医院运动障碍科进行 MDS-UPDRS III 方案时的大型视频数据库的三维(3D)骨架。

结果

我们开发了一种 2D 和 3D 自动分析工具,以研究 MDS-UPDRS III 方案重复期间的几个关键参数的演变。2D 自动分析的分数与 MDS-UPDRS III 的金标准评分显著相关,使用决策树算法对打点(0.609)和手部运动(0.701)方案的评分进行了确定系数测量。使用 MDS-UPDRS III 评分测量的不同参数的个体相关性具有有意义的信息,并且与 MDS-UPDRS III 指南一致。

结论

我们开发了一种基于深度学习的工具,可以精确分析运动参数,以可靠地对帕金森病患者进行 MDS-UPDRS 方式的运动迟缓评分。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0691/9661322/4ca1bfa83e01/jpd-12-jpd223445-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验