Suppr超能文献

使用“计算机视觉”筛查帕金森病。

Screening for Parkinson's disease using "computer vision".

作者信息

Kasemsap Narongrit, Tikkapanyo Purinat, Wanjantuk Panupong, Vorasoot Nisa, Kongbunkiat Kannikar, Panitchote Anupol

机构信息

Division of Neurology, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand.

North-Eastern Stroke Research Group, Khon Kaen University, Khon Kaen, Thailand.

出版信息

PLoS One. 2025 Aug 12;20(8):e0330373. doi: 10.1371/journal.pone.0330373. eCollection 2025.

Abstract

BACKGROUND

Identifying bradykinesia is crucial for diagnosing Parkinson's disease (PD). Traditionally, the finger-tapping test has been used, relying on subjective assessments by physicians. Computer vision offers a non-contact and cost-effective alternative for assessing Parkinson's disease.

OBJECTIVE

This study aimed to detect Parkinson's disease by identifying bradykinesia using computer vision in the finger-tapping test and applying machine learning techniques for both hands.

METHODS

We recruited 100 patients with PD and healthy controls. Four neurologists assessed bradykinesia, and 10-second smartphone-recorded finger-tapping movements were analyzed using Google MediaPipe Hands software. Six machine learning models were trained using a nested cross-validation framework.

RESULTS

The differences in tapping scores between the left and right hands were significantly greater in the PD group (2.8 (5.0) vs 0.4 (0.7), p = 0.001) than in the healthy controls. Moreover, the tapping amplitude variation and all amplitude decremental parameters in the PD group differed significantly from those of the standard controls. The PD group had significantly lower tapping scores than the normal subjects (right: 17.9 (7.8)/ left: 17.9 (5.6) vs. right: 24.6 (7.3)/ left: 24.6 (7.2), p < 0.001). The support vector machine outperformed the other models. The most influential features were the tapping difference, followed by the tapping score (right hand) and tapping amplitude mean (right hand).

CONCLUSIONS

A computer vision method can accurately detect bradykinesia using the tapping feature from the finger-tapping method, which involves the simultaneous tapping of both hands.

摘要

背景

识别运动迟缓对帕金森病(PD)的诊断至关重要。传统上,一直使用手指敲击测试,依赖医生的主观评估。计算机视觉为评估帕金森病提供了一种非接触且经济高效的替代方法。

目的

本研究旨在通过在手指敲击测试中使用计算机视觉识别运动迟缓并对双手应用机器学习技术来检测帕金森病。

方法

我们招募了100名帕金森病患者和健康对照者。四名神经科医生评估运动迟缓,并使用谷歌MediaPipe Hands软件分析智能手机记录的10秒手指敲击动作。使用嵌套交叉验证框架训练了六种机器学习模型。

结果

帕金森病组左右手敲击分数的差异(2.8(5.0)对0.4(0.7),p = 0.001)显著大于健康对照组。此外,帕金森病组的敲击幅度变化和所有幅度递减参数与标准对照组有显著差异。帕金森病组的敲击分数显著低于正常受试者(右手:17.9(7.8)/左手:17.9(5.6)对右手:24.6(7.3)/左手:24.6(7.2),p < 0.001)。支持向量机的表现优于其他模型。最具影响力的特征是敲击差异,其次是敲击分数(右手)和敲击幅度平均值(右手)。

结论

一种计算机视觉方法可以使用双手同时敲击的手指敲击方法中的敲击特征准确检测运动迟缓。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/027a/12342252/f2f53145671c/pone.0330373.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验