Lee Min-Ting, Le Henry H, Johnson Elizabeth L
Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
Division of Nutritional Sciences, Cornell University, Ithaca, NY, USA.
J Lipid Res. 2021;62:100034. doi: 10.1194/jlr.RA120000950. Epub 2021 Feb 6.
Functions of the gut microbiome have a growing number of implications for host metabolic health, with diet being one of the most significant influences on microbiome composition. Compelling links between diet and the gut microbiome suggest key roles for various macronutrients, including lipids, yet how individual classes of dietary lipids interact with the microbiome remains largely unknown. Sphingolipids are bioactive components of most foods and are also produced by prominent gut microbes. This makes sphingolipids intriguing candidates for shaping diet-microbiome interactions. Here, we used a click chemistry-based approach to track the incorporation of bioorthogonal dietary omega-alkynyl sphinganine [sphinganine alkyne (SAA)] into the murine gut microbial community (bioorthogonal labeling). We identified microbial and SAA-specific metabolic products through fluorescence-based sorting of SAA-containing microbes (Sort), 16S rRNA gene sequencing to identify the sphingolipid-interacting microbes (Seq), and comparative metabolomics to identify products of SAA assimilation by the microbiome (Spec). Together, this approach, termed Bioorthogonal labeling-Sort-Seq-Spec (BOSSS), revealed that SAA assimilation is nearly exclusively performed by gut Bacteroides, indicating that sphingolipid-producing bacteria play a major role in processing dietary sphinganine. Comparative metabolomics of cecal microbiota from SAA-treated mice revealed conversion of SAA to a suite of dihydroceramides, consistent with metabolic activities of Bacteroides and Bifidobacterium. Additionally, other sphingolipid-interacting microbes were identified with a focus on an uncharacterized ability of Bacteroides and Bifidobacterium to metabolize dietary sphingolipids. We conclude that BOSSS provides a platform to study the flux of virtually any alkyne-labeled metabolite in diet-microbiome interactions.
肠道微生物群的功能对宿主代谢健康的影响越来越大,饮食是对微生物群组成影响最大的因素之一。饮食与肠道微生物群之间令人信服的联系表明各种宏量营养素(包括脂质)起着关键作用,但各类膳食脂质如何与微生物群相互作用在很大程度上仍不清楚。鞘脂是大多数食物的生物活性成分,也是主要肠道微生物产生的物质。这使得鞘脂成为塑造饮食与微生物群相互作用的有趣候选物。在这里,我们使用基于点击化学的方法来追踪生物正交膳食ω-炔基鞘氨醇[鞘氨醇炔烃(SAA)]掺入小鼠肠道微生物群落的情况(生物正交标记)。我们通过对含SAA的微生物进行基于荧光的分选(分选)、16S rRNA基因测序以鉴定与鞘脂相互作用的微生物(测序)以及比较代谢组学以鉴定微生物群对SAA同化的产物(分析),确定了微生物和SAA特异性代谢产物。这种方法统称为生物正交标记-分选-测序-分析(BOSSS),它揭示了SAA同化几乎完全由肠道拟杆菌进行,这表明产生鞘脂的细菌在处理膳食鞘氨醇中起主要作用。对SAA处理小鼠的盲肠微生物群进行比较代谢组学分析,发现SAA转化为一系列二氢神经酰胺,这与拟杆菌和双歧杆菌的代谢活性一致。此外,还鉴定了其他与鞘脂相互作用的微生物,重点是拟杆菌和双歧杆菌代谢膳食鞘脂的未表征能力。我们得出结论,BOSSS提供了一个平台,用于研究饮食与微生物群相互作用中几乎任何炔基标记代谢物的通量。