Suppr超能文献

基于 CT 骨特征的低能量髋臼骨折与对照的鉴别。

Discrimination of Low-Energy Acetabular Fractures from Controls Using Computed Tomography-Based Bone Characteristics.

机构信息

Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.

Department of Radiology & Nuclear Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands.

出版信息

Ann Biomed Eng. 2021 Jan;49(1):367-381. doi: 10.1007/s10439-020-02563-4. Epub 2020 Jul 9.

Abstract

The incidence of low-energy acetabular fractures has increased. However, the structural factors for these fractures remain unclear. The objective of this study was to extract trabecular bone architecture and proximal femur geometry (PFG) measures from clinical computed tomography (CT) images to (1) identify possible structural risk factors of acetabular fractures, and (2) to discriminate fracture cases from controls using machine learning methods. CT images of 107 acetabular fracture subjects (25 females, 82 males) and 107 age-gender matched controls were examined. Three volumes of interest, one at the acetabulum and two at the femoral head, were extracted to calculate bone volume fraction (BV/TV), gray-level co-occurrence matrix and histogram of the gray values (GV). The PFG was defined by neck shaft angle and femoral neck axis length. Relationships between the variables were assessed by statistical mean comparisons and correlation analyses. Bayesian logistic regression and Elastic net machine learning models were implemented for classification. We found lower BV/TV at the femoral head (0.51 vs. 0.55, p = 0.012) and lower mean GV at both the acetabulum (98.81 vs. 115.33, p < 0.001) and femoral head (150.63 vs. 163.47, p = 0.005) of fracture subjects when compared to their matched controls. The trabeculae within the femoral heads of the acetabular fracture sides differed in structure, density and texture from the corresponding control sides of the fracture subjects. Moreover, the PFG and trabecular architectural variables, alone and in combination, were able to discriminate fracture cases from controls (area under the receiver operating characteristics curve 0.70 to 0.79). In conclusion, lower density in the acetabulum and femoral head with abnormal trabecular structure and texture at the femoral head, appear to be risk factors for low-energy acetabular fractures.

摘要

低能量髋臼骨折的发病率有所增加。然而,这些骨折的结构因素仍不清楚。本研究的目的是从临床 CT 图像中提取骨小梁结构和股骨近端几何形状(PFG)测量值,(1)确定髋臼骨折的可能结构危险因素,(2)使用机器学习方法区分骨折病例和对照。检查了 107 例髋臼骨折患者(25 名女性,82 名男性)和 107 名年龄性别匹配的对照者的 CT 图像。提取三个感兴趣的体积,一个在髋臼,两个在股骨头,以计算骨体积分数(BV/TV)、灰度共生矩阵和灰度值的直方图(GV)。PFG 由颈干角和股骨颈轴长度定义。通过统计均值比较和相关分析评估变量之间的关系。实施贝叶斯逻辑回归和弹性网机器学习模型进行分类。我们发现,与匹配的对照组相比,骨折患者的股骨头处的 BV/TV 较低(0.51 比 0.55,p = 0.012),髋臼和股骨头处的平均 GV 较低(98.81 比 115.33,p < 0.001)和 150.63 比 163.47,p = 0.005)。髋臼骨折侧股骨头内的小梁在结构、密度和纹理上与骨折患者的相应对照侧不同。此外,PFG 和小梁结构变量,单独和组合,能够区分骨折病例和对照(接受者操作特征曲线下面积为 0.70 至 0.79)。总之,髋臼和股骨头密度降低,股骨头处小梁结构和纹理异常,似乎是低能量髋臼骨折的危险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b0b/7773622/2b229957310f/10439_2020_2563_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验