Suppr超能文献

无细胞蛋白质合成及其自下而上组装细胞的前景。

Cell-Free Protein Synthesis and Its Perspectives for Assembling Cells from the Bottom-Up.

作者信息

Kai Lei, Schwille Petra

机构信息

School of Life Sciences, Jiangsu Normal University, Shanghai Road 101, 221116, Xuzhou, P. R. China.

Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, D-82152, Martinsried, Germany.

出版信息

Adv Biosyst. 2019 Jun;3(6):e1800322. doi: 10.1002/adbi.201800322. Epub 2019 Feb 4.

Abstract

The underlying idea of synthetic biology is that biological reactions/modules/systems can be precisely engineered and controlled toward desired products. Numerous efforts in the past decades in deciphering the complexity of biological systems in vivo have led to a variety of tools for synthetic biology, especially based on recombinant DNA. However, one generic limitation of all living systems is that the vast majority of energy input is dedicated to maintain the system as a whole, rather than the small part of interest. Cell-free synthetic biology is aiming at exactly this fundamental limitation, providing the next level of flexibility for engineering and designing biological systems in vitro. New technology has continuously inspired cell-free biology and extended its applications, including gene circuits, spatiotemporally controlled pathways, coactivated catalysts systems, and rationally designed multienzyme pathways, in particular, minimal cell construction. In the context of this special issue, discussing work being carried out in the "MaxSynBio" consortium, the advances in characterizing stochasticity and dynamics of cell-free protein synthesis within cell-sized compartments, as well as the molecular crowding effect, are discussed. The organization of spatial heterogeneity is the key prerequisite for achieving hierarchy and stepwise assembly of minimal cells from the bottom-up.

摘要

合成生物学的基本理念是,生物反应/模块/系统能够针对所需产物进行精确设计和控制。在过去几十年里,人们为解析体内生物系统的复杂性付出了诸多努力,从而催生了各种用于合成生物学的工具,尤其是基于重组DNA的工具。然而,所有生命系统的一个普遍局限在于,绝大多数能量输入都用于维持整个系统,而非人们感兴趣的一小部分。无细胞合成生物学恰恰旨在解决这一根本局限,为体外工程化设计生物系统提供了更高层次的灵活性。新技术不断推动无细胞生物学发展并拓展其应用领域,包括基因电路、时空控制途径、共激活催化剂系统以及合理设计的多酶途径,尤其是最小细胞构建。在本期特刊的背景下,讨论了“MaxSynBio”联盟正在开展的工作,探讨了在细胞大小的隔室内表征无细胞蛋白质合成的随机性和动力学以及分子拥挤效应方面取得的进展。空间异质性的组织是自下而上实现最小细胞的层次结构和逐步组装的关键前提。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验