Suppr超能文献

3-D H-Scan 超声成像及卷积神经网络在散射体尺寸估计中的应用。

3-D H-Scan Ultrasound Imaging and Use of a Convolutional Neural Network for Scatterer Size Estimation.

机构信息

Department of Electrical and Computer Engineering, University of Texas at Dallas, Richardson, TX, USA.

Department of Bioengineering, University of Texas at Dallas, Richardson, TX, USA.

出版信息

Ultrasound Med Biol. 2020 Oct;46(10):2810-2818. doi: 10.1016/j.ultrasmedbio.2020.06.001. Epub 2020 Jul 9.

Abstract

H-Scan ultrasound (US) is a new imaging technology that estimates the relative size of acoustic scattering objects and structures. The purpose of this study was to introduce a three-dimensional (3-D) H-scan US imaging approach for scatterer size estimation in volume space. Using a programmable research scanner (Vantage 256, Verasonics Inc, Kirkland, WA, USA) equipped with a custom volumetric imaging transducer (4 DL7, Vermon, Tours, France), raw radiofrequency (RF) data was collected for offline processing to generate H-scan US volumes. A deep convolutional neural network (CNN) was modified and used to achieve voxel mapping from the input H-scan US image to underlying scatterer size. Preliminary studies were conducted using homogeneous gelatin-based tissue-mimicking phantom materials embedded with acoustic scatterers of varying size (15 to 250 μm) and concentrations (0.1 to 1%). Two additional phantoms were embedded with 63 or 125 µm-sized microspheres and used to test CNN estimation accuracy. In vitro results indicate that 3-D H-scan US imaging can visualize the spatial distribution of acoustic scatterers of varying size at different concentrations (R > 0.85, p < 0.03). The result of scatterer size estimation reveals that a CNN can achieve an average mapping accuracy of 93.3%. Overall, our preliminary in vitro findings reveal that 3-D H-scan US imaging allows the visualization of tissue scatterer patterns and incorporation of a CNN can be used to help estimate size of the acoustic scattering objects.

摘要

H 扫描超声(US)是一种新的成像技术,用于估计声散射物体和结构的相对大小。本研究旨在引入一种用于体积空间中散射体大小估计的三维(3-D)H 扫描 US 成像方法。使用配备定制容积成像换能器(4DL7,Vermont,Tours,法国)的可编程研究扫描仪(Vantage 256,Verasonics Inc,Kirkland,WA,USA),采集原始射频(RF)数据以进行离线处理,生成 H 扫描 US 体积。修改了深度卷积神经网络(CNN),以实现从输入 H 扫描 US 图像到基础散射体大小的体素映射。使用含有不同大小(15 至 250μm)和浓度(0.1 至 1%)的声散射体的均匀明胶基组织模拟体模材料进行初步研究。另外两个体模中嵌入了 63 或 125μm 大小的微球,用于测试 CNN 估计准确性。体外结果表明,3-D H 扫描 US 成像可以可视化不同浓度下不同大小的声散射体的空间分布(R>0.85,p<0.03)。散射体大小估计的结果表明,CNN 可以实现平均映射精度为 93.3%。总体而言,我们的初步体外研究结果表明,3-D H 扫描 US 成像允许可视化组织散射体模式,并且可以使用 CNN 来帮助估计声散射物体的大小。

相似文献

4
Spatial Angular Compounding Technique for H-Scan Ultrasound Imaging.用于H扫描超声成像的空间角复合技术
Ultrasound Med Biol. 2018 Jan;44(1):267-277. doi: 10.1016/j.ultrasmedbio.2017.09.003. Epub 2017 Oct 12.
5
High-Resolution Ultrasound Characterization of Local Scattering in Cancer Tissue.癌症组织中局部散射的高分辨率超声特征。
Ultrasound Med Biol. 2023 Apr;49(4):951-960. doi: 10.1016/j.ultrasmedbio.2022.11.017. Epub 2023 Jan 19.
8
Ultrasound Scatterer Density Classification Using Convolutional Neural Networks and Patch Statistics.使用卷积神经网络和图像块统计进行超声散射体密度分类
IEEE Trans Ultrason Ferroelectr Freq Control. 2021 Aug;68(8):2697-2706. doi: 10.1109/TUFFC.2021.3075912. Epub 2021 Jul 26.

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验