Zhang Le, Gooya Ali, Pereanez Marco, Dong Bo, Piechnik Stefan, Neubauer Stefan, Petersen Steffen, Frangi Alejandro F
IEEE Trans Biomed Eng. 2018 Nov 21. doi: 10.1109/TBME.2018.2881952.
Cardiac magnetic resonance (CMR) images play a growing role in the diagnostic imaging of cardiovascular diseases. Full coverage of the left ventricle (LV), from base to apex, is a basic criterion for CMR image quality and necessary for accurate measurement of cardiac volume and functional assessment. Incomplete coverage of the LV is identified through visual inspection, which is time-consuming and usually done retrospectively in the assessment of large imaging cohorts. This paper proposes a novel automatic method for determining LV coverage from CMR images by using Fisher-discriminative three-dimensional (FD3D) convolutional neural networks (CNNs). In contrast to our previous method employing 2D CNNs, this approach utilizes spatial contextual information in CMR volumes, extracts more representative high-level features and enhances the discriminative capacity of the baseline 2D CNN learning framework, thus achieving superior detection accuracy. A two-stage framework is proposed to identify missing basal and apical slices in measurements of CMR volume. First, the FD3D CNN extracts high-level features from the CMR stacks. These image representations are then used to detect the missing basal and apical slices. Compared to the traditional 3D CNN strategy, the proposed FD3D CNN minimizes within-class scatter and maximizes between-class scatter. We performed extensive experiments to validate the proposed method on more than 5,000 independent volumetric CMR scans from the UK Biobank study, achieving low error rates for missing basal/apical slice detection (4.9%/4.6%). The proposed method can also be adopted for assessing LV coverage for other types of CMR image data.
心脏磁共振(CMR)图像在心血管疾病的诊断成像中发挥着越来越重要的作用。从心底到心尖对左心室(LV)进行全面覆盖,是CMR图像质量的基本标准,也是准确测量心脏容积和进行功能评估所必需的。通过目视检查来识别LV覆盖不完整的情况,这既耗时,而且在评估大型成像队列时通常是回顾性进行的。本文提出了一种新颖的自动方法,通过使用Fisher判别三维(FD3D)卷积神经网络(CNN)从CMR图像中确定LV覆盖情况。与我们之前采用二维CNN的方法相比,这种方法利用了CMR容积中的空间上下文信息,提取了更具代表性的高级特征,并增强了基线二维CNN学习框架的判别能力,从而实现了更高的检测精度。提出了一个两阶段框架,以识别CMR容积测量中缺失的基底和心尖切片。首先,FD3D CNN从CMR堆栈中提取高级特征。然后,这些图像表示用于检测缺失的基底和心尖切片。与传统的三维CNN策略相比,所提出的FD3D CNN最大限度地减少了类内散度,并最大限度地增加了类间散度。我们进行了广泛的实验,以验证所提出的方法在来自英国生物银行研究的5000多次独立容积CMR扫描上的有效性,在检测缺失的基底/心尖切片方面实现了较低的错误率(4.9%/4.6%)。所提出的方法也可用于评估其他类型CMR图像数据的LV覆盖情况。