Suppr超能文献

通过基于7T扩散磁共振成像的半监督深度上下文感知学习进行小脑深部核团分割

Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI.

作者信息

Kim Jinyoung, Patriat Remi, Kaplan Jordan, Solomon Oren, Harel Noam

机构信息

Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA.

Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA.

出版信息

IEEE Access. 2020;8:101550-101568. doi: 10.1109/access.2020.2998537. Epub 2020 May 29.

Abstract

Deep cerebellar nuclei are a key structure of the cerebellum that are involved in processing motor and sensory information. It is thus a crucial step to accurately segment deep cerebellar nuclei for the understanding of the cerebellum system and its utility in deep brain stimulation treatment. However, it is challenging to clearly visualize such small nuclei under standard clinical magnetic resonance imaging (MRI) protocols and therefore precise segmentation is not feasible. Recent advances in 7 Tesla (T) MRI technology and great potential of deep neural networks facilitate automatic patient-specific segmentation. In this paper, we propose a novel deep learning framework (referred to as DCN-Net) for fast, accurate, and robust patient-specific segmentation of deep cerebellar dentate and interposed nuclei on 7T diffusion MRI. DCN-Net effectively encodes contextual information on the patch images without consecutive pooling operations and adding complexity via proposed dilated dense blocks. During the end-to-end training, label probabilities of dentate and interposed nuclei are independently learned with a hybrid loss, handling highly imbalanced data. Finally, we utilize self-training strategies to cope with the problem of limited labeled data. To this end, auxiliary dentate and interposed nuclei labels are created on unlabeled data by using DCN-Net trained on manual labels. We validate the proposed framework using 7T B0 MRIs from 60 subjects. Experimental results demonstrate that DCN-Net provides better segmentation than atlas-based deep cerebellar nuclei segmentation tools and other state-of-the-art deep neural networks in terms of accuracy and consistency. We further prove the effectiveness of the proposed components within DCN-Net in dentate and interposed nuclei segmentation.

摘要

小脑深部核团是小脑的关键结构,参与运动和感觉信息的处理。因此,准确分割小脑深部核团是理解小脑系统及其在深部脑刺激治疗中作用的关键步骤。然而,在标准临床磁共振成像(MRI)协议下清晰可视化如此小的核团具有挑战性,因此精确分割是不可行的。7特斯拉(T)MRI技术的最新进展和深度神经网络的巨大潜力促进了针对患者的自动分割。在本文中,我们提出了一种新颖的深度学习框架(称为DCN-Net),用于在7T扩散MRI上快速、准确且稳健地对小脑深部齿状核和间位核进行针对患者的分割。DCN-Net通过提出的扩张密集块有效地对补丁图像上的上下文信息进行编码,而无需连续池化操作和增加复杂性。在端到端训练期间,齿状核和间位核的标签概率通过混合损失独立学习,以处理高度不平衡的数据。最后,我们利用自训练策略来应对标记数据有限的问题。为此,通过使用在手动标签上训练的DCN-Net,在未标记数据上创建辅助齿状核和间位核标签。我们使用来自60名受试者的7T B0 MRI对所提出的框架进行了验证。实验结果表明,DCN-Net在准确性和一致性方面比基于图谱的小脑深部核团分割工具和其他先进的深度神经网络提供了更好的分割效果。我们进一步证明了DCN-Net中所提出的组件在齿状核和间位核分割中的有效性。

相似文献

1
Deep Cerebellar Nuclei Segmentation via Semi-Supervised Deep Context-Aware Learning from 7T Diffusion MRI.
IEEE Access. 2020;8:101550-101568. doi: 10.1109/access.2020.2998537. Epub 2020 May 29.
2
Deep learning-based cardiac cine segmentation: Transfer learning application to 7T ultrahigh-field MRI.
Magn Reson Med. 2021 Oct;86(4):2179-2191. doi: 10.1002/mrm.28822. Epub 2021 May 18.
3
Weakly Supervised Deep Nuclei Segmentation Using Partial Points Annotation in Histopathology Images.
IEEE Trans Med Imaging. 2020 Nov;39(11):3655-3666. doi: 10.1109/TMI.2020.3002244. Epub 2020 Oct 28.
4
Efficient Combination of CNN and Transformer for Dual-Teacher Uncertainty-guided Semi-supervised Medical Image Segmentation.
Comput Methods Programs Biomed. 2022 Nov;226:107099. doi: 10.1016/j.cmpb.2022.107099. Epub 2022 Sep 2.
5
Semi Supervised Learning with Deep Embedded Clustering for Image Classification and Segmentation.
IEEE Access. 2019;7:11093-11104. doi: 10.1109/ACCESS.2019.2891970. Epub 2019 Jan 9.
6
CEREBRUM-7T: Fast and Fully Volumetric Brain Segmentation of 7 Tesla MR Volumes.
Hum Brain Mapp. 2021 Dec 1;42(17):5563-5580. doi: 10.1002/hbm.25636. Epub 2021 Oct 1.
7
Learning-based 3T brain MRI segmentation with guidance from 7T MRI labeling.
Med Phys. 2016 Dec;43(12):6588-6597. doi: 10.1118/1.4967487.
8
Local contrastive loss with pseudo-label based self-training for semi-supervised medical image segmentation.
Med Image Anal. 2023 Jul;87:102792. doi: 10.1016/j.media.2023.102792. Epub 2023 Mar 11.
9
Imaging the deep cerebellar nuclei: a probabilistic atlas and normalization procedure.
Neuroimage. 2011 Feb 1;54(3):1786-94. doi: 10.1016/j.neuroimage.2010.10.035. Epub 2010 Oct 18.
10
Semi-supervised learning for automatic segmentation of the knee from MRI with convolutional neural networks.
Comput Methods Programs Biomed. 2020 Jun;189:105328. doi: 10.1016/j.cmpb.2020.105328. Epub 2020 Jan 11.

引用本文的文献

1
Towards an Informed Choice of Diffusion MRI Image Contrasts for Cerebellar Segmentation.
Hum Brain Mapp. 2025 Aug 1;46(11):e70317. doi: 10.1002/hbm.70317.
3
Towards an informed choice of diffusion MRI image contrasts for cerebellar segmentation.
bioRxiv. 2025 Mar 11:2025.03.10.642452. doi: 10.1101/2025.03.10.642452.
4
A multimodal submillimeter MRI atlas of the human cerebellum.
Sci Rep. 2024 Mar 7;14(1):5622. doi: 10.1038/s41598-024-55412-y.
5
Deep Learning Segmentation of the Nucleus Basalis of Meynert on 3T MRI.
AJNR Am J Neuroradiol. 2023 Sep;44(9):1020-1025. doi: 10.3174/ajnr.A7950. Epub 2023 Aug 10.
7
8
Automated segmentation of deep brain nuclei using convolutional neural networks and susceptibility weighted imaging.
Hum Brain Mapp. 2021 Oct 15;42(15):4809-4822. doi: 10.1002/hbm.25604. Epub 2021 Jul 29.
9
Deep-learning based fully automatic segmentation of the globus pallidus interna and externa using ultra-high 7 Tesla MRI.
Hum Brain Mapp. 2021 Jun 15;42(9):2862-2879. doi: 10.1002/hbm.25409. Epub 2021 Mar 18.

本文引用的文献

2
Reducing the Hausdorff Distance in Medical Image Segmentation With Convolutional Neural Networks.
IEEE Trans Med Imaging. 2020 Feb;39(2):499-513. doi: 10.1109/TMI.2019.2930068. Epub 2019 Jul 19.
3
Consensus Paper: Experimental Neurostimulation of the Cerebellum.
Cerebellum. 2019 Dec;18(6):1064-1097. doi: 10.1007/s12311-019-01041-5.
4
CE-Net: Context Encoder Network for 2D Medical Image Segmentation.
IEEE Trans Med Imaging. 2019 Oct;38(10):2281-2292. doi: 10.1109/TMI.2019.2903562. Epub 2019 Mar 7.
5
Attention gated networks: Learning to leverage salient regions in medical images.
Med Image Anal. 2019 Apr;53:197-207. doi: 10.1016/j.media.2019.01.012. Epub 2019 Feb 5.
6
QuickNAT: A fully convolutional network for quick and accurate segmentation of neuroanatomy.
Neuroimage. 2019 Feb 1;186:713-727. doi: 10.1016/j.neuroimage.2018.11.042. Epub 2018 Nov 29.
9
Multiregion segmentation of bladder cancer structures in MRI with progressive dilated convolutional networks.
Med Phys. 2018 Dec;45(12):5482-5493. doi: 10.1002/mp.13240. Epub 2018 Nov 8.
10
Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI.
PLoS One. 2018 Aug 22;13(8):e0201469. doi: 10.1371/journal.pone.0201469. eCollection 2018.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验