IEEE Trans Med Imaging. 2020 Feb;39(2):499-513. doi: 10.1109/TMI.2019.2930068. Epub 2019 Jul 19.
The Hausdorff Distance (HD) is widely used in evaluating medical image segmentation methods. However, the existing segmentation methods do not attempt to reduce HD directly. In this paper, we present novel loss functions for training convolutional neural network (CNN)-based segmentation methods with the goal of reducing HD directly. We propose three methods to estimate HD from the segmentation probability map produced by a CNN. One method makes use of the distance transform of the segmentation boundary. Another method is based on applying morphological erosion on the difference between the true and estimated segmentation maps. The third method works by applying circular/spherical convolution kernels of different radii on the segmentation probability maps. Based on these three methods for estimating HD, we suggest three loss functions that can be used for training to reduce HD. We use these loss functions to train CNNs for segmentation of the prostate, liver, and pancreas in ultrasound, magnetic resonance, and computed tomography images and compare the results with commonly-used loss functions. Our results show that the proposed loss functions can lead to approximately 18-45% reduction in HD without degrading other segmentation performance criteria such as the Dice similarity coefficient. The proposed loss functions can be used for training medical image segmentation methods in order to reduce the large segmentation errors.
豪斯多夫距离(HD)在评估医学图像分割方法中被广泛应用。然而,现有的分割方法并没有试图直接减少 HD。在本文中,我们提出了新的损失函数,用于训练基于卷积神经网络(CNN)的分割方法,目的是直接减少 HD。我们提出了三种从 CNN 生成的分割概率图中估计 HD 的方法。一种方法利用分割边界的距离变换。另一种方法基于对真实和估计的分割图之间的差异进行形态腐蚀。第三种方法是在分割概率图上应用不同半径的圆形/球形卷积核。基于这三种用于估计 HD 的方法,我们提出了三种可以用于训练以减少 HD 的损失函数。我们使用这些损失函数来训练用于超声、磁共振和计算机断层扫描图像的前列腺、肝脏和胰腺分割的 CNN,并将结果与常用的损失函数进行比较。我们的结果表明,所提出的损失函数可以将 HD 减少约 18-45%,而不会降低其他分割性能标准,如骰子相似系数。所提出的损失函数可用于训练医学图像分割方法,以减少大的分割误差。