Departamento de Fitopatologia, Universidade Federal de Lavras, CP 3027, Lavras, MG, 37200-900, Brazil.
Faculdade de Ciências Agronômicas, Universidade Estadual Paulista Júlio de Mesquita Filho, 18, Botucatu, SP, 610-307, Brazil.
World J Microbiol Biotechnol. 2020 Jul 13;36(8):113. doi: 10.1007/s11274-020-02882-7.
Commercial products based on Trichoderma are obtained mainly from solid-state fermentation. Submerged liquid fermentation is the most appropriate method compared to the solid medium for large-scale production of Trichoderma spp. The present study aimed to optimize the combination of key variables that influence the liquid fermentation process of Trichoderma asperelloides LQC-96 for conidial production coupled with its efficiency in the control of Sclerotinia sclerotiorum. In addition, we verified whether the optimized culture conditions can be used for the conidial production of Trichoderma erinaceum T-12 and T-18 and Trichoderma harzianum T-15. Fermentation studies were performed in shake flasks following a planned experimental design to reduce the number of tests and consumable costs. The effect of temperature, pH, photoperiod, carbon:nitrogen ratio and water activity on conidial production were assessed, which of pH was the only meaningful factor contributing to increased conidial production of T. asperelloides LQC-96. From the five variables studied initially, pH and C:N ratio were further used in the second design (rotational central composite design-RCCD). Hence, the best conditions for the production of T. asperelloides LQC-96 conidia by liquid fermentation consisted of initial pH of 3.5, C:N ratio of 200:1 at 30 °C, without glycerol, and under 24 h photoperiod. The highest conidial concentration was observed after seven days of fermentation. Under these optimal conditions, T. erinaceum T-12 and T-18, and T. harzianum T-15 were also cultivated, but only LQC-96 efficiently parasitized S. sclerotiorum, precluding sclerotium myceliogenic germination. Our findings propose optimal fermentation conditions that maximize conidial production of T. asperelloides as a potential biofungicide against S. sclerotiorum.
商业上基于木霉的产品主要是通过固态发酵获得的。与固体培养基相比,液态发酵是大规模生产木霉属的最适宜方法。本研究旨在优化影响asperelloides LQC-96 液体发酵过程的关键变量组合,以实现产孢,并提高其对菌核病病原菌菌核的防治效果。此外,我们还验证了优化后的培养条件是否可用于产孢菌毛栓菌 T-12 和 T-18 以及哈茨木霉 T-15。通过摇瓶发酵进行发酵研究,采用实验设计计划减少测试次数和消耗品成本。评估了温度、pH 值、光周期、碳氮比和水活度对产孢的影响,其中 pH 值是唯一对asperelloides LQC-96 产孢量有显著影响的因素。在最初研究的五个变量中,pH 值和 C:N 比进一步用于第二次设计(旋转中心组合设计-RCCD)。因此,液体发酵生产asperelloides LQC-96 分生孢子的最佳条件为初始 pH 值 3.5、C:N 比 200:1、30°C、无甘油和 24 h 光周期。发酵七天后观察到最高的分生孢子浓度。在这些最佳条件下,还培养了毛栓菌 T-12 和 T-18 以及哈茨木霉 T-15,但只有 LQC-96 能够有效地寄生菌核病病原菌菌核,阻止菌核萌发。我们的研究结果提出了最佳的发酵条件,可以最大限度地提高asperelloides 产孢作为防治菌核病病原菌菌核的潜在生物杀菌剂的效果。