Suppr超能文献

一种非经典的 RNAi 通路控制着毛霉目中的毒力和基因组稳定性。

A non-canonical RNAi pathway controls virulence and genome stability in Mucorales.

机构信息

Department of Genetics and Microbiology, Faculty of Biology, University of Murcia, Murcia, Spain.

出版信息

PLoS Genet. 2020 Jul 13;16(7):e1008611. doi: 10.1371/journal.pgen.1008611. eCollection 2020 Jul.

Abstract

Epimutations in fungal pathogens are emerging as novel phenomena that could explain the fast-developing resistance to antifungal drugs and other stresses. These epimutations are generated by RNA interference (RNAi) mechanisms that transiently silence specific genes to overcome stressful stimuli. The early-diverging fungus Mucor circinelloides exercises a fine control over two interacting RNAi pathways to produce epimutants: the canonical RNAi pathway and a new RNAi degradative pathway. The latter is considered a non-canonical RNAi pathway (NCRIP) because it relies on RNA-dependent RNA polymerases (RdRPs) and a novel ribonuclease III-like named R3B2 to degrade target transcripts. Here in this work, we uncovered the role of NCRIP in regulating virulence processes and transposon movements through key components of the pathway, RdRP1 and R3B2. Mutants in these genes are unable to launch a proper virulence response to macrophage phagocytosis, resulting in a decreased virulence potential. The transcriptomic profile of rdrp1Δ and r3b2Δ mutants revealed a pre-exposure adaptation to the stressful phagosomal environment even when the strains are not confronted by macrophages. These results suggest that NCRIP represses key targets during regular growth and releases its control when a stressful environment challenges the fungus. NCRIP interacts with the RNAi canonical core to protect genome stability by controlling the expression of centromeric retrotransposable elements. In the absence of NCRIP, these retrotransposons are robustly repressed by the canonical RNAi machinery; thus, supporting the antagonistic role of NCRIP in containing the epimutational pathway. Both interacting RNAi pathways might be essential to govern host-pathogen interactions through transient adaptations, contributing to the unique traits of the emerging infection mucormycosis.

摘要

真菌病原体中的表观遗传突变是一种新兴现象,它可能解释了抗真菌药物和其他压力下快速发展的耐药性。这些表观遗传突变是由 RNA 干扰 (RNAi) 机制产生的,该机制会短暂沉默特定基因以克服应激刺激。早期分化的真菌毛霉 circinelloides 通过两种相互作用的 RNAi 途径来产生表观遗传突变体:经典 RNAi 途径和新的 RNAi 降解途径。后者被认为是非经典 RNAi 途径 (NCRIP),因为它依赖于 RNA 依赖性 RNA 聚合酶 (RdRPs) 和一种新的核糖核酸酶 III 样酶 R3B2 来降解靶标转录物。在这项工作中,我们通过该途径的关键成分,RdRP1 和 R3B2,揭示了 NCRIP 在调节毒力过程和转座子运动中的作用。这些基因的突变体无法对巨噬细胞吞噬作用发起适当的毒力反应,导致毒力潜力降低。rdrp1Δ 和 r3b2Δ 突变体的转录组图谱显示,即使在不与巨噬细胞接触的情况下,它们也会预先适应应激吞噬体环境,从而表现出预暴露适应。这些结果表明,NCRIP 在常规生长过程中抑制关键靶标,并且在应激环境挑战真菌时释放其控制。NCRIP 与 RNAi 经典核心相互作用,通过控制着丝粒反转录转座子的表达来保护基因组稳定性。在没有 NCRIP 的情况下,这些反转录转座子被经典 RNAi 机制强烈抑制;因此,支持 NCRIP 在抑制表观遗传途径中的拮抗作用。两种相互作用的 RNAi 途径可能通过短暂的适应对于控制宿主-病原体相互作用至关重要,有助于新兴感染毛霉病的独特特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a86/7377519/dc100fd7d1d4/pgen.1008611.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验