Suppr超能文献

探索监控系统数据在驾驶分心和瞌睡研究中的应用。

Exploring Monitoring Systems Data for Driver Distraction and Drowsiness Research.

机构信息

Research Centre for Territory, Transports and Environment, Faculty of Engineering of the University of Porto, 4200-465 Porto, Portugal.

出版信息

Sensors (Basel). 2020 Jul 9;20(14):3836. doi: 10.3390/s20143836.

Abstract

Driver inattention is a major contributor to road crashes. The emerging of new driver monitoring systems represents an opportunity for researchers to explore new data sources to understand driver inattention, even if the technology was not developed with this purpose in mind. This study is based on retrospective data obtained from two driver monitoring systems to study distraction and drowsiness risk factors. The data includes information about the trips performed by 330 drivers and corresponding distraction and drowsiness alerts emitted by the systems. The drivers' historical travel data allowed defining two groups with different mobility patterns (short-distance and long-distance drivers) through a cluster analysis. Then, the impacts of the driver's profile and trip characteristics (e.g., driving time, average speed, and breaking time and frequency) on inattention were analyzed using ordered probit models. The results show that long-distance drivers, typically associated with professionals, are less prone to distraction and drowsiness than short-distance drivers. The driving time increases the probability of inattention, while the breaking frequency is more important to mitigate inattention than the breaking time. Higher average speeds increase the inattention risk, being associated with road facilities featuring a monotonous driving environment.

摘要

驾驶员注意力不集中是道路交通事故的主要原因之一。新的驾驶员监控系统的出现为研究人员提供了一个机会,他们可以利用这些新的数据来源来研究驾驶员注意力不集中的问题,即使该技术并非为此目的而开发的。本研究基于从两个驾驶员监控系统中获得的回顾性数据,旨在研究分心和困意的风险因素。这些数据包括 330 名驾驶员的行程信息以及系统发出的相应分心和困意警报。通过聚类分析,根据驾驶员的历史出行数据将驾驶员分为两组,具有不同的出行模式(短距离和长距离驾驶员)。然后,使用有序概率模型分析了驾驶员特征和行程特征(例如,驾驶时间、平均速度、刹车时间和频率)对注意力不集中的影响。结果表明,长途驾驶员(通常与专业人士相关)比短途驾驶员更容易分心和困意。驾驶时间增加了注意力不集中的可能性,而刹车频率比刹车时间更能减轻注意力不集中的问题。较高的平均速度会增加注意力不集中的风险,与单调的驾驶环境有关的道路设施相关联。

相似文献

本文引用的文献

10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验