Suppr超能文献

氮掺杂石墨烯负载的原子对催化剂用于氮还原反应:基于能带中心的描述符

Atom-Pair Catalysts Supported by N-Doped Graphene for the Nitrogen Reduction Reaction: -Band Center-Based Descriptor.

作者信息

Deng Ting, Cen Chao, Shen Hujun, Wang Shuyi, Guo Jingdong, Cai Shaohong, Deng Mingsen

机构信息

School of Physics, Guizhou University, Guiyang 550025, China.

Guizhou Provincial Key Laboratory of Computational Nano-material Science, Guizhou Education University, Guiyang 550018, China.

出版信息

J Phys Chem Lett. 2020 Aug 6;11(15):6320-6329. doi: 10.1021/acs.jpclett.0c01450. Epub 2020 Jul 23.

Abstract

Achieving an effective nitrogen reduction reaction (NRR) under mild conditions is a great challenge for industrial ammonia synthesis. NRR is often accompanied by a competing hydrogen evolution reaction (HER), which causes an extremely low Faraday efficiency. We systematically investigated the NRR reactivity of atom-pair catalysts (APCs) formed by 20 transition metal (TM) elements supported by N-doped graphene via three reaction pathways. By analyzing the correlation among the limiting potential, Gibbs free energy, and -band center, we evaluated the activity trends of the TM APCs. Our computations revealed that the enzymatic pathway is the most suitable reaction pathway for the TM APCs, and the intrinsic activity trend of these APCs can be determined by the -band center-based descriptor, which has a simple linear correlation with the bonding/antibonding orbital population. In addition, the NRR APCs with excellent performance have been screened out through selective analysis of the competing HER in the electrocatalytic NRR process.

摘要

在温和条件下实现有效的氮还原反应(NRR)对工业氨合成来说是一项巨大挑战。NRR常常伴随着竞争性析氢反应(HER),这导致法拉第效率极低。我们通过三条反应途径系统地研究了由氮掺杂石墨烯负载的20种过渡金属(TM)元素形成的原子对催化剂(APC)的NRR反应活性。通过分析极限电位、吉布斯自由能和 -带中心之间的相关性,我们评估了TM APC的活性趋势。我们的计算表明,酶促途径是TM APC最合适的反应途径,并且这些APC的本征活性趋势可以由基于 -带中心的描述符确定,该描述符与成键/反键轨道占据数具有简单的线性相关性。此外,通过对电催化NRR过程中竞争性HER的选择性分析,筛选出了具有优异性能的NRR APC。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验