Suppr超能文献

需要为大数据开发患者依从性的标准衡量指标:观点。

The Need to Develop Standard Measures of Patient Adherence for Big Data: Viewpoint.

机构信息

Department of Family Medicine, Medical University of Lodz, Lodz, Poland.

Preventive Medicine and Public Health Department, Zaragoza University, Zaragoza, Spain.

出版信息

J Med Internet Res. 2020 Aug 27;22(8):e18150. doi: 10.2196/18150.

Abstract

Despite half a century of dedicated studies, medication adherence remains far from perfect, with many patients not taking their medications as prescribed. The magnitude of this problem is rising, jeopardizing the effectiveness of evidence-based therapies. An important reason for this is the unprecedented demographic change at the beginning of the 21st century. Aging leads to multimorbidity and complex therapeutic regimens that create a fertile ground for nonadherence. As this scenario is a global problem, it needs a worldwide answer. Could this answer be provided, given the new opportunities created by the digitization of health care? Daily, health-related information is being collected in electronic health records, pharmacy dispensing databases, health insurance systems, and national health system records. These big data repositories offer a unique chance to study adherence both retrospectively and prospectively at the population level, as well as its related factors. In order to make full use of this opportunity, there is a need to develop standardized measures of adherence, which can be applied globally to big data and will inform scientific research, clinical practice, and public health. These standardized measures may also enable a better understanding of the relationship between adherence and clinical outcomes, and allow for fair benchmarking of the effectiveness and cost-effectiveness of adherence-targeting interventions. Unfortunately, despite this obvious need, such standards are still lacking. Therefore, the aim of this paper is to call for a consensus on global standards for measuring adherence with big data. More specifically, sound standards of formatting and analyzing big data are needed in order to assess, uniformly present, and compare patterns of medication adherence across studies. Wide use of these standards may improve adherence and make health care systems more effective and sustainable.

摘要

尽管半个世纪以来一直致力于研究,但药物依从性仍然远未达到完美,许多患者并未按照规定服用药物。这个问题的严重性正在上升,危及基于证据的治疗的有效性。造成这种情况的一个重要原因是 21 世纪初前所未有的人口结构变化。老龄化导致多种疾病并存和复杂的治疗方案,为不遵医嘱创造了有利条件。由于这种情况是全球性问题,因此需要全球范围内的解决方案。鉴于医疗保健数字化带来的新机遇,这个问题能否得到解决?每天,与健康相关的信息都在电子健康记录、药房配药数据库、健康保险系统和国家卫生系统记录中收集。这些大数据存储库提供了一个独特的机会,可以在人群水平上回顾性和前瞻性地研究依从性及其相关因素。为了充分利用这一机会,需要制定标准化的依从性衡量标准,可以在全球范围内应用于大数据,并为科学研究、临床实践和公共卫生提供信息。这些标准化的衡量标准还可以更好地理解依从性与临床结果之间的关系,并允许对依从性靶向干预措施的有效性和成本效益进行公平基准测试。不幸的是,尽管存在这种明显的需求,但此类标准仍然缺乏。因此,本文旨在呼吁就大数据衡量依从性的全球标准达成共识。更具体地说,需要有健全的大数据格式和分析标准,以便评估、统一呈现和比较研究中药物依从性的模式。广泛使用这些标准可以提高依从性,使医疗保健系统更有效和可持续。

相似文献

5
Critical Care Network in the State of Qatar.卡塔尔国重症监护网络。
Qatar Med J. 2019 Nov 7;2019(2):2. doi: 10.5339/qmj.2019.qccc.2. eCollection 2019.
7
10
Patient Privacy in the Era of Big Data.大数据时代的患者隐私
Balkan Med J. 2018 Jan 20;35(1):8-17. doi: 10.4274/balkanmedj.2017.0966. Epub 2017 Sep 13.

引用本文的文献

本文引用的文献

1
Tracking COVID-19 in Europe: Infodemiology Approach.追踪欧洲的 COVID-19:信息流行病学方法。
JMIR Public Health Surveill. 2020 Apr 20;6(2):e18941. doi: 10.2196/18941.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验