Suppr超能文献

组蛋白变体 H2A.B 稳定核小体和染色质结构的分子机制。

Molecular mechanism of histone variant H2A.B on stability and assembly of nucleosome and chromatin structures.

机构信息

MOE Key Laboratory for Membraneless Organelles & Cellular Dynamics, National Science Center for Physical Sciences at Microscale, School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, People's Republic of China.

Laboratory of Evolutionary Genetics and Genomics, The Rockefeller University, New York, NY, 10065, USA.

出版信息

Epigenetics Chromatin. 2020 Jul 14;13(1):28. doi: 10.1186/s13072-020-00351-x.

Abstract

BACKGROUND

H2A.B, the most divergent histone variant of H2A, can significantly modulate nucleosome and chromatin structures. However, the related structural details and the underlying mechanism remain elusive to date. In this work, we built atomic models of the H2A.B-containing nucleosome core particle (NCP), chromatosome, and chromatin fiber. Multiscale modeling including all-atom molecular dynamics and coarse-grained simulations were then carried out for these systems.

RESULTS

It is found that sequence differences at the C-terminal tail, the docking domain, and the L2 loop, between H2A.B and H2A are directly responsible for the DNA unwrapping in the H2A.B NCP, whereas the N-terminus of H2A.B may somewhat compensate for the aforementioned unwrapping effect. The assembly of the H2A.B NCP is more difficult than that of the H2A NCP. H2A.B may also modulate the interactions of H1 with both the NCP and the linker DNA and could further affect the higher-order structure of the chromatin fiber.

CONCLUSIONS

The results agree with the experimental results and may shed new light on the biological function of H2A.B. Multiscale modeling may be a valuable tool for investigating structure and dynamics of the nucleosome and the chromatin induced by various histone variants.

摘要

背景

H2A.B 是 H2A 中最具差异的组蛋白变体,它可以显著调节核小体和染色质结构。然而,其相关的结构细节和潜在机制至今仍不清楚。在这项工作中,我们构建了含有 H2A.B 的核小体核心颗粒(NCP)、染色质小体和染色质纤维的原子模型。然后对这些系统进行了包括全原子分子动力学和粗粒化模拟在内的多尺度建模。

结果

研究发现,H2A.B 和 H2A 之间 C 末端尾部、对接域和 L2 环的序列差异直接导致 H2A.B NCP 中的 DNA 解缠绕,而 H2A.B 的 N 末端可能在一定程度上补偿了上述解缠绕效应。H2A.B NCP 的组装比 H2A NCP 更困难。H2A.B 还可能调节 H1 与 NCP 和连接 DNA 的相互作用,并进一步影响染色质纤维的高级结构。

结论

研究结果与实验结果一致,为 H2A.B 的生物学功能提供了新的见解。多尺度建模可能是研究各种组蛋白变体诱导的核小体和染色质结构和动力学的一种有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/414f/7362417/40bce6d208e6/13072_2020_351_Fig5_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验