Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Sart Tilman, Liège, Belgium.
Institute of Condensed Matter and Nanosciences (IMCN), Université catholique de Louvain (UCLouvain), B-1348 Louvain-la-Neuve, Belgium.
Chem Rev. 2020 Aug 12;120(15):7219-7347. doi: 10.1021/acs.chemrev.9b00846. Epub 2020 Jul 15.
The ever increasing industrial production of commodity and specialty chemicals inexorably depletes the finite primary fossil resources available on Earth. The forecast of population growth over the next 3 decades is a very strong incentive for the identification of alternative primary resources other than petro-based ones. In contrast with fossil resources, renewable biomass is a virtually inexhaustible reservoir of chemical building blocks. Shifting the current industrial paradigm from almost exclusively petro-based resources to alternative bio-based raw materials requires more than vibrant political messages; it requires a profound revision of the concepts and technologies on which industrial chemical processes rely. Only a small fraction of molecules extracted from biomass bears significant chemical and commercial potentials to be considered as ubiquitous chemical platforms upon which a new, bio-based industry can thrive. Owing to its inherent assets in terms of unique process experience, scalability, and reduced environmental footprint, flow chemistry arguably has a major role to play in this context. This review covers a selection of C to C bio-based chemical platforms with existing commercial markets including polyols (ethylene glycol, 1,2-propanediol, 1,3-propanediol, glycerol, 1,4-butanediol, xylitol, and sorbitol), furanoids (furfural and 5-hydroxymethylfurfural) and carboxylic acids (lactic acid, succinic acid, fumaric acid, malic acid, itaconic acid, and levulinic acid). The aim of this review is to illustrate the various aspects of upgrading bio-based platform molecules toward commodity or specialty chemicals using new process concepts that fall under the umbrella of continuous flow technology and that could change the future perspectives of biorefineries.
日益增长的商品和特种化学品的工业生产不可避免地消耗了地球上有限的主要化石资源。未来 30 年的人口增长预测强烈激励人们寻找除石油基资源以外的替代主要资源。与化石资源相比,可再生生物质是一种几乎用之不竭的化学结构单元库。将当前的工业模式从几乎完全基于石油的资源转变为替代的生物基原料,不仅需要充满活力的政治信息;还需要对工业化学过程所依赖的概念和技术进行深刻的修订。只有从生物质中提取的一小部分分子具有重要的化学和商业潜力,可以被视为新的、基于生物的产业赖以繁荣的普遍化学平台。由于其在独特的工艺经验、可扩展性和减少环境足迹方面的固有优势,流动化学在这种情况下可以发挥重要作用。本文综述了一些具有现有商业市场的 C 到 C 生物基化学平台,包括多元醇(乙二醇、1,2-丙二醇、1,3-丙二醇、甘油、1,4-丁二醇、木糖醇和山梨糖醇)、呋喃衍生物(糠醛和 5-羟甲基糠醛)和羧酸(乳酸、琥珀酸、富马酸、苹果酸、衣康酸和乙酰丙酸)。本文的目的是通过新的连续流技术概念,展示使用各种方法将生物基平台分子升级为商品或特种化学品的各个方面,这些概念可能会改变生物精炼厂的未来前景。