Suppr超能文献

使用机器学习预测化学性神经毒性

prediction of chemical neurotoxicity using machine learning.

作者信息

Jiang Changsheng, Zhao Piaopiao, Li Weihua, Tang Yun, Liu Guixia

机构信息

Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 130 Meilong Rd, Xuhui District, Shanghai 200237, China.

出版信息

Toxicol Res (Camb). 2020 Apr 29;9(3):164-172. doi: 10.1093/toxres/tfaa016. eCollection 2020 Jun.

Abstract

Neurotoxicity is one of the main causes of drug withdrawal, and the biological experimental methods of detecting neurotoxic toxicity are time-consuming and laborious. In addition, the existing computational prediction models of neurotoxicity still have some shortcomings. In response to these shortcomings, we collected a large number of data set of neurotoxicity and used PyBioMed molecular descriptors and eight machine learning algorithms to construct regression prediction models of chemical neurotoxicity. Through the cross-validation and test set validation of the models, it was found that the extra-trees regressor model had the best predictive effect on neurotoxicity ([Formula: see text] = 0.784). In addition, we get the applicability domain of the models by calculating the standard deviation distance and the lever distance of the training set. We also found that some molecular descriptors are closely related to neurotoxicity by calculating the contribution of the molecular descriptors to the models. Considering the accuracy of the regression models, we recommend using the extra-trees regressor model to predict the chemical autonomic neurotoxicity.

摘要

神经毒性是药物戒断的主要原因之一,而检测神经毒性的生物学实验方法既耗时又费力。此外,现有的神经毒性计算预测模型仍存在一些不足。针对这些不足,我们收集了大量神经毒性数据集,并使用PyBioMed分子描述符和八种机器学习算法构建了化学神经毒性的回归预测模型。通过对模型的交叉验证和测试集验证,发现极端随机树回归模型对神经毒性具有最佳预测效果([公式:见正文] = 0.784)。此外,我们通过计算训练集的标准差距离和杠杆距离得到了模型的适用域。通过计算分子描述符对模型的贡献,我们还发现一些分子描述符与神经毒性密切相关。考虑到回归模型的准确性,我们建议使用极端随机树回归模型来预测化学自主神经毒性。

相似文献

1
prediction of chemical neurotoxicity using machine learning.使用机器学习预测化学性神经毒性
Toxicol Res (Camb). 2020 Apr 29;9(3):164-172. doi: 10.1093/toxres/tfaa016. eCollection 2020 Jun.
3
A review on machine learning methods for in silico toxicity prediction.计算机模拟毒性预测的机器学习方法综述。
J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2018;36(4):169-191. doi: 10.1080/10590501.2018.1537118. Epub 2019 Jan 10.

引用本文的文献

2
Research trends of computational toxicology: a bibliometric analysis.计算毒理学的研究趋势:文献计量分析
Toxicol Res (Camb). 2024 Sep 21;13(5):tfae147. doi: 10.1093/toxres/tfae147. eCollection 2024 Oct.

本文引用的文献

1
Phase II and phase III failures: 2013-2015.II期和III期试验失败情况:2013 - 2015年
Nat Rev Drug Discov. 2016 Dec;15(12):817-818. doi: 10.1038/nrd.2016.184. Epub 2016 Nov 4.
4
WITHDRAWN--a resource for withdrawn and discontinued drugs.撤回——关于撤市和停用药物的资源。
Nucleic Acids Res. 2016 Jan 4;44(D1):D1080-6. doi: 10.1093/nar/gkv1192. Epub 2015 Nov 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验