Suppr超能文献

衰老、计算和神经再生过程的演化。

Ageing, computation and the evolution of neural regeneration processes.

机构信息

ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Spain.

Institut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Spain.

出版信息

J R Soc Interface. 2020 Jul;17(168):20200181. doi: 10.1098/rsif.2020.0181. Epub 2020 Jul 15.

Abstract

Metazoans gather information from their environments and respond in predictable ways. These computational tasks are achieved with neural networks of varying complexity. Their performance must be reliable over an individual's lifetime while dealing with the shorter lifespan of cells and connection failure-thus rendering ageing a relevant feature. How do computations degrade over an organism's lifespan? How reliable can they remain throughout? We tackle these questions with a multi-objective optimization approach. We demand that digital organisms equipped with neural networks solve a computational task reliably over an extended lifespan. Neural connections are costly (as an associated metabolism in living beings). They also degrade over time, but can be regenerated at some expense. We investigate the simultaneous minimization of both these costs and the computational error. Pareto optimal trade-offs emerge with designs displaying a broad range of solutions: from small networks with high regeneration rate, to large, redundant circuits that regenerate slowly. The organism's lifespan and the external damage act as evolutionary pressures. They improve the exploration of the space of solutions and impose tighter optimality constraints. Large damage rates can also constrain the space of possibilities, forcing the commitment of organisms to unique strategies for neural systems maintenance.

摘要

后生动物从环境中收集信息,并以可预测的方式做出反应。这些计算任务是通过具有不同复杂程度的神经网络来实现的。它们的性能必须在个体的一生中保持可靠,同时还要应对细胞寿命较短和连接失败的问题——因此,衰老成为一个相关特征。计算在生物体的寿命过程中是如何退化的?它们在整个过程中能保持多可靠?我们通过多目标优化方法来解决这些问题。我们要求配备神经网络的数字生物体在延长的寿命内可靠地解决计算任务。神经连接是昂贵的(就像生物体中的相关代谢物一样)。随着时间的推移,它们会退化,但也可以在一定程度上进行再生。我们同时研究这两种成本和计算错误的最小化。出现了帕累托最优的权衡,设计显示出广泛的解决方案:从具有高再生率的小网络,到大型、冗余、再生缓慢的电路。生物体的寿命和外部损伤作为进化压力。它们可以改善对解决方案空间的探索,并施加更严格的最优性约束。大的损伤率也可以限制可能性的空间,迫使生物体对神经系统的维护采取独特的策略。

相似文献

1
Ageing, computation and the evolution of neural regeneration processes.衰老、计算和神经再生过程的演化。
J R Soc Interface. 2020 Jul;17(168):20200181. doi: 10.1098/rsif.2020.0181. Epub 2020 Jul 15.
2
A neural network model for the evolution of learning in changing environments.用于变化环境中学习进化的神经网络模型。
PLoS Comput Biol. 2024 Jan 30;20(1):e1011840. doi: 10.1371/journal.pcbi.1011840. eCollection 2024 Jan.
9
Neural optimization: Understanding trade-offs with Pareto theory.神经优化:用 Pareto 理论理解权衡取舍。
Curr Opin Neurobiol. 2021 Dec;71:84-91. doi: 10.1016/j.conb.2021.08.008. Epub 2021 Oct 21.

本文引用的文献

1
Evolutionary aspects of reservoir computing.储层计算的进化方面。
Philos Trans R Soc Lond B Biol Sci. 2019 Jun 10;374(1774):20180377. doi: 10.1098/rstb.2018.0377.
2
The morphospace of language networks.语言网络的形态空间。
Sci Rep. 2018 Jul 11;8(1):10465. doi: 10.1038/s41598-018-28820-0.
4
An option space for early neural evolution.早期神经进化的一个选择空间。
Philos Trans R Soc Lond B Biol Sci. 2015 Dec 19;370(1684). doi: 10.1098/rstb.2015.0181.
5
Phase transitions in Pareto optimal complex networks.帕累托最优复杂网络中的相变
Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Sep;92(3):032807. doi: 10.1103/PhysRevE.92.032807. Epub 2015 Sep 21.
6
The evolutionary origins of modularity.模块性的进化起源。
Proc Biol Sci. 2013 Jan 30;280(1755):20122863. doi: 10.1098/rspb.2012.2863. Print 2013 Mar 22.
7
Distributed computation: the new wave of synthetic biology devices.分布式计算:合成生物学设备的新浪潮。
Trends Biotechnol. 2012 Jun;30(6):342-9. doi: 10.1016/j.tibtech.2012.03.006. Epub 2012 Apr 18.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验