Suppr超能文献

重复神经结构的命运。

Fate of Duplicated Neural Structures.

作者信息

Seoane Luís F

机构信息

Departamento de Biología de Sistemas, Centro Nacional de Biotecnología (CNB), CSIC, C/Darwin 3, 28049 Madrid, Spain.

Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC), CSIC-UIB, 07122 Palma de Mallorca, Spain.

出版信息

Entropy (Basel). 2020 Aug 25;22(9):928. doi: 10.3390/e22090928.

Abstract

Statistical physics determines the abundance of different arrangements of matter depending on cost-benefit balances. Its formalism and phenomenology percolate throughout biological processes and set limits to effective computation. Under specific conditions, self-replicating and computationally complex patterns become favored, yielding life, cognition, and Darwinian evolution. Neurons and neural circuits sit at a crossroads between statistical physics, computation, and (through their role in cognition) natural selection. Can we establish a statistical physics of neural circuits? Such theory would tell what kinds of brains to expect under set energetic, evolutionary, and computational conditions. With this big picture in mind, we focus on the fate of duplicated neural circuits. We look at examples from central nervous systems, with stress on computational thresholds that might prompt this redundancy. We also study a naive cost-benefit balance for duplicated circuits implementing complex phenotypes. From this, we derive phase diagrams and (phase-like) transitions between single and duplicated circuits, which constrain evolutionary paths to complex cognition. Back to the big picture, similar phase diagrams and transitions might constrain I/O and internal connectivity patterns of neural circuits at large. The formalism of statistical physics seems to be a natural framework for this worthy line of research.

摘要

统计物理学根据成本效益平衡来确定物质不同排列的丰度。其形式体系和现象学贯穿于生物过程之中,并为有效计算设定了限制。在特定条件下,自我复制且计算复杂的模式变得更受青睐,从而产生了生命、认知和达尔文式进化。神经元和神经回路处于统计物理学、计算以及(通过它们在认知中的作用)自然选择的交叉点上。我们能否建立神经回路的统计物理学?这样的理论将能告诉我们在设定的能量、进化和计算条件下会出现什么样的大脑。基于这一宏观图景,我们聚焦于复制后的神经回路的命运。我们研究中枢神经系统中的例子,重点关注可能促使这种冗余出现的计算阈值。我们还研究了实现复杂表型的复制回路的一种简单成本效益平衡。据此,我们得出了单回路和复制回路之间的相图以及(类似相的)转变,这些限制了向复杂认知的进化路径。回到宏观图景,类似的相图和转变可能在很大程度上限制神经回路的输入/输出和内部连接模式。统计物理学的形式体系似乎是这一有价值的研究方向的自然框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验