Unit of Molecular Metabolism, Department of Clinical Sciences, Lund University Diabetes Centre, Clinical Research Center 91:10, Jan Waldenströmsgata 35, SE-21428, Malmö, Sweden.
Immunovirology Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Malmö, Sweden.
Diabetologia. 2020 Nov;63(11):2372-2384. doi: 10.1007/s00125-020-05219-z. Epub 2020 Jul 16.
AIM/HYPOTHESIS: Human enteroviral infections are suggested to be associated with type 1 diabetes. However, the mechanism by which enteroviruses can trigger disease remains unknown. The present study aims to investigate the impact of enterovirus on autophagy, a cellular process that regulates beta cell homeostasis, using the clonal beta cell line INS(832/13) and human islet cells as in vitro models.
INS(832/13) cells and human islet cells were infected with a strain of echovirus 16 (E16), originally isolated from the stool of a child who developed type 1 diabetes-associated autoantibodies. Virus production and release was determined by 50% cell culture infectious dose (CCID) assay and FACS analysis. The occurrence of autophagy, autophagosomes, lysosomes and autolysosomes was detected by western blot, baculoviral-mediated expression of microtubule-associated protein light chain 3 (LC3)II-GFP and LysoTracker Red, and quantified by Cellomics ArrayScan. Autophagy was also monitored with a Cyto-ID detection kit. Nutrient deprivation (low glucose [2.8 mmol/l]), amino acid starvation (Earle's Balanced Salt Solution [EBSS]) and autophagy-modifying agents (rapamycin and chloroquine) were used in control experiments. Insulin secretion and the expression of autophagy-related (Atg) genes and genes involved in autophagosome-lysosome fusion were determined.
E16-infected INS(832/13) cells displayed an accumulation of autophagosomes, compared with non-treated (NT) cells (grown in complete RPMI1640 containing 11.1 mmol/l glucose) (32.1 ± 1.7 vs 21.0 ± 1.2 μm/cell; p = 0.05). This was accompanied by increased LC3II ratio both in E16-infected cells grown in low glucose (LG) (2.8 mmol/l) (0.42 ± 0.03 vs 0.11 ± 0.04 (arbitrary units [a.u.]); p < 0.0001) and grown in media containing 11.1 mmol/l glucose (0.37 ± 0.016 vs 0.05 ± 0.02 (a.u.); p < 0.0001). Additionally, p62 accumulated in cells after E16 infection when grown in LG (1.23 ± 0.31 vs 0.36 ± 0.12 (a.u.); p = 0.012) and grown in media containing 11.1 mmol/l glucose (1.79 ± 0.39 vs 0.66 ± 0.15 (a.u.); p = 0.0078). mRNA levels of genes involved in autophagosome formation and autophagosome-lysosome fusion remained unchanged in E16-infected cells, except Atg7, which was significantly increased when autophagy was induced by E16 infection, in combination with LG (1.48 ± 0.08-fold; p = 0.02) and at 11.1 mmol/l glucose (1.26 ± 0.2-fold; p = 0.001), compared with NT controls. Moreover, autophagosomes accumulated in E16-infected cells to the same extent as when cells were treated with the lysosomal inhibitor, chloroquine, clearly indicating that autophagosome turnover was blocked. Upon infection, there was an increased viral titre in the cell culture supernatant and a marked reduction in glucose-stimulated insulin secretion (112.9 ± 24.4 vs 209.8 ± 24.4 ng [mg protein] h; p = 0.006), compared with uninfected controls, but cellular viability remained unaffected. Importantly, and in agreement with the observations for INS(832/13) cells, E16 infection impaired autophagic flux in primary human islet cells (46.5 ± 1.6 vs 34.4 ± 2.1 μm/cell; p = 0.01).
CONCLUSIONS/INTERPRETATION: Enteroviruses disrupt beta cell autophagy by impairing the later stages of the autophagic pathway, without influencing expression of key genes involved in core autophagy machinery. This results in increased viral replication, non-lytic viral spread and accumulation of autophagic structures, all of which may contribute to beta cell demise and type 1 diabetes. Graphical abstract.
目的/假设:人类肠道病毒感染与 1 型糖尿病有关。然而,肠道病毒引发疾病的机制尚不清楚。本研究旨在使用克隆胰岛β细胞系 INS(832/13)和人胰岛细胞作为体外模型,研究肠道病毒对自噬的影响,自噬是一种调节β细胞内稳态的细胞过程。
用 E16 肠道病毒株(最初从患有 1 型糖尿病相关自身抗体的儿童粪便中分离出来)感染 INS(832/13)细胞和人胰岛细胞。通过 50%细胞培养感染剂量(CCID)测定和流式细胞术分析来确定病毒的产生和释放。通过 Western blot、杆状病毒介导的微管相关蛋白轻链 3(LC3)II-GFP 和 LysoTracker Red 的表达以及 Cellomics ArrayScan 的定量来检测自噬体、溶酶体和自噬溶酶体的形成。还使用 Cyto-ID 检测试剂盒监测自噬。在对照实验中使用低葡萄糖(2.8mmol/L)、氨基酸饥饿(Earle's 平衡盐溶液[EBSS])和自噬修饰剂(雷帕霉素和氯喹)。测定胰岛素分泌以及自噬相关(Atg)基因和参与自噬体-溶酶体融合的基因的表达。
与未经处理(在含有 11.1mmol/L 葡萄糖的完全 RPMI1640 中培养)的细胞(32.1±1.7μm/cell)相比,E16 感染的 INS(832/13)细胞显示自噬体积累增加(21.0±1.2μm/cell;p=0.05)。这伴随着 LC3II 比值的增加,无论是在低葡萄糖(2.8mmol/L)中生长的 E16 感染细胞(0.42±0.03 vs 0.11±0.04(任意单位[a.u.]);p<0.0001)还是在含有 11.1mmol/L 葡萄糖的培养基中生长的细胞(0.37±0.016 vs 0.05±0.02(a.u.);p<0.0001)。此外,当在 LG 中生长时,E16 感染后 p62 在细胞中积累(1.23±0.31 vs 0.36±0.12(a.u.);p=0.012),在含有 11.1mmol/L 葡萄糖的培养基中生长时也有积累(1.79±0.39 vs 0.66±0.15(a.u.);p=0.0078)。E16 感染细胞中参与自噬体形成和自噬体-溶酶体融合的基因的 mRNA 水平保持不变,除了 Atg7,当 E16 感染诱导自噬时,其水平显著增加,与 LG(1.48±0.08 倍;p=0.02)和 11.1mmol/L 葡萄糖(1.26±0.2 倍;p=0.001)联合使用时,与 NT 对照组相比。此外,自噬体在 E16 感染的细胞中积累到与用溶酶体抑制剂氯喹处理的细胞相同的程度,这清楚地表明自噬体的周转被阻断。感染后,细胞培养上清液中的病毒滴度增加,葡萄糖刺激的胰岛素分泌显著减少(112.9±24.4 vs 209.8±24.4ng[mg 蛋白]h;p=0.006),与未感染对照组相比,但细胞活力不受影响。重要的是,与 INS(832/13)细胞的观察结果一致,E16 感染损害了人原代胰岛细胞的自噬流(46.5±1.6 vs 34.4±2.1μm/cell;p=0.01)。
结论/解释:肠道病毒通过破坏自噬途径的后期阶段来破坏β细胞自噬,而不影响核心自噬机制中涉及的关键基因的表达。这导致病毒复制增加、非裂解性病毒传播和自噬体结构积累,所有这些都可能导致β细胞死亡和 1 型糖尿病。