Suppr超能文献

基于血清代谢模式的机器学习可对早期肺腺癌进行编码。

Machine learning of serum metabolic patterns encodes early-stage lung adenocarcinoma.

机构信息

State Key Laboratory for Oncogenes and Related Genes, School of Biomedical Engineering, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China.

Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, 200030, Shanghai, P. R. China.

出版信息

Nat Commun. 2020 Jul 16;11(1):3556. doi: 10.1038/s41467-020-17347-6.

Abstract

Early cancer detection greatly increases the chances for successful treatment, but available diagnostics for some tumours, including lung adenocarcinoma (LA), are limited. An ideal early-stage diagnosis of LA for large-scale clinical use must address quick detection, low invasiveness, and high performance. Here, we conduct machine learning of serum metabolic patterns to detect early-stage LA. We extract direct metabolic patterns by the optimized ferric particle-assisted laser desorption/ionization mass spectrometry within 1 s using only 50 nL of serum. We define a metabolic range of 100-400 Da with 143 m/z features. We diagnose early-stage LA with sensitivity70-90% and specificity90-93% through the sparse regression machine learning of patterns. We identify a biomarker panel of seven metabolites and relevant pathways to distinguish early-stage LA from controls (p < 0.05). Our approach advances the design of metabolic analysis for early cancer detection and holds promise as an efficient test for low-cost rollout to clinics.

摘要

早期癌症检测大大增加了成功治疗的机会,但一些肿瘤的现有诊断方法,包括肺腺癌 (LA),受到限制。理想的用于大规模临床应用的早期 LA 诊断必须解决快速检测、低侵入性和高性能的问题。在这里,我们通过优化的亚铁粒子辅助激光解吸/电离质谱进行血清代谢模式的机器学习,仅使用 50 nL 的血清在 1 秒内提取直接代谢模式。我们定义了一个代谢范围为 100-400 Da 的代谢范围,具有 143 m/z 特征。我们通过模式的稀疏回归机器学习,以约 70-90%的灵敏度和约 90-93%的特异性来诊断早期 LA。我们确定了一个由七种代谢物和相关途径组成的生物标志物面板,以区分早期 LA 和对照(p < 0.05)。我们的方法推进了用于早期癌症检测的代谢分析设计,并有望作为一种用于低成本推广到临床的有效检测方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验