Suppr超能文献

驾驶中的视觉信息获取理论研究

Toward a Theory of Visual Information Acquisition in Driving.

机构信息

2167 Massachusetts Institute of Technology, Cambridge, USA.

6243 University of Central Florida, Orlando, USA.

出版信息

Hum Factors. 2022 Jun;64(4):694-713. doi: 10.1177/0018720820939693. Epub 2020 Jul 17.

Abstract

OBJECTIVE

The aim of this study is to describe information acquisition theory, explaining how drivers acquire and represent the information they need.

BACKGROUND

While questions of what drivers are aware of underlie many questions in driver behavior, existing theories do not directly address how drivers in particular and observers in general acquire visual information. Understanding the mechanisms of information acquisition is necessary to build predictive models of drivers' representation of the world and can be applied beyond driving to a wide variety of visual tasks.

METHOD

We describe our theory of information acquisition, looking to questions in driver behavior and results from vision science research that speak to its constituent elements. We focus on the intersection of peripheral vision, visual attention, and eye movement planning and identify how an understanding of these visual mechanisms and processes in the context of information acquisition can inform more complete models of driver knowledge and state.

RESULTS

We set forth our theory of information acquisition, describing the gap in understanding that it fills and how existing questions in this space can be better understood using it.

CONCLUSION

Information acquisition theory provides a new and powerful way to study, model, and predict what drivers know about the world, reflecting our current understanding of visual mechanisms and enabling new theories, models, and applications.

APPLICATION

Using information acquisition theory to understand how drivers acquire, lose, and update their representation of the environment will aid development of driver assistance systems, semiautonomous vehicles, and road safety overall.

摘要

目的

本研究旨在描述信息获取理论,解释驾驶员如何获取和表示所需的信息。

背景

虽然驾驶员感知到的问题是驾驶员行为中的许多问题的基础,但现有的理论并没有直接解决驾驶员和观察者如何获取视觉信息的问题。了解信息获取的机制对于构建驾驶员对世界的表示的预测模型是必要的,并且可以应用于驾驶以外的广泛的视觉任务。

方法

我们描述了我们的信息获取理论,关注驾驶员行为中的问题以及视觉科学研究的结果,这些结果涉及到其组成部分。我们专注于周边视觉、视觉注意力和眼球运动规划的交叉点,并确定在信息获取的背景下理解这些视觉机制和过程如何为更完整的驾驶员知识和状态模型提供信息。

结果

我们提出了我们的信息获取理论,描述了它所填补的理解差距,以及如何使用它更好地理解该领域的现有问题。

结论

信息获取理论为研究、建模和预测驾驶员对世界的了解提供了一种新的、强大的方法,反映了我们当前对视觉机制的理解,并为新的理论、模型和应用提供了可能性。

应用

利用信息获取理论来理解驾驶员如何获取、失去和更新他们对环境的表示,将有助于开发驾驶员辅助系统、半自动驾驶车辆以及整体道路安全。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d73/9136385/ae4c809ae1eb/10.1177_0018720820939693-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验