Andrews Institute for Orthopedics & Sports Medicine, Gulf Breeze, Florida, U.S.A..
Arthrex, Naples, Florida, U.S.A.
Arthroscopy. 2020 Nov;36(11):2911-2918. doi: 10.1016/j.arthro.2020.07.005. Epub 2020 Jul 15.
To determine the cellular composition of a product created with peripheral blood harvested after systemic mobilization with filgrastim and processed with one point-of-care blood concentrating system, i.e., a platelet-rich plasma (PRP) system. The second purpose was to compare mobilized platelet-rich plasma (M-PRP) with a concentrated bone marrow aspirate (cBMA) and a PRP created from the same subjects with the same PRP system.
Ten healthy volunteer subjects were recruited for collection and analysis of 3 tissue sources: non-treated peripheral blood, bone marrow aspirate, and filgrastim-mobilized peripheral blood, involving 4 doses of weight-based filgrastim. One point-of-care blood and bone marrow concentrating system was used to create 3 products: PRP, cBMA, and M-PRP. Automated hematologic analysis was performed on all products to quantify total red blood cells, white blood cells (WBCs), monocyte, platelet, and hematopoietic progenitor cell (HPC) concentrations. Flow cytometry was used to determine hematopoietic and mesenchymal progenitor cell populations. Lastly, concentrates were cultured and fibroblast colony-forming units (CFU-F) and morphology of adherent cells were evaluated.
M-PRP contained a greater concentration of WBC (mean difference = 53.2 k/μL; P < .0001), monocytes (mean difference = 8.3 k/μL; P = .002), and a trend toward a greater concentration of HPC (mean difference = 200.5 /μL; P = .060) when compared with PRP. M-PRP contained a greater concentration of monocytes (mean difference = 5.5 k/μL; P = .017) and a trend toward a greater concentration of platelets (mean difference = 348 k/μL; P = .051) and HPC (mean difference = 193.4 /μL; P = .068) when compared with cBMA. M-PRP had a similar concentration of platelets to PRP (mean difference = 110 k/μL; P = .051) and PRP had a greater concentration than cBMA (mean difference = 458 k/μL; P = .003). cBMA remained the only product capable of producing CFU-Fs (446 ± 247 /mL) as neither the M-PRP nor PRP produced CFU-Fs. M-PRP produced colonies consistent with WBC.
M-PRP, produced with filgrastim mobilized blood and a proprietary PRP system, contained more total WBCs, monocytes, platelets, and HPCs than cBMA and more WBCs, monocytes, and HPCs than PRP.
Filgrastim mobilized PRP may be an alternative to cBMA for use as a point-of-care product for orthopaedic treatments.
确定使用粒细胞集落刺激因子(filgrastim)进行全身动员后采集并经过一个即时血液浓缩系统(即富含血小板的血浆(PRP)系统)处理的产品的细胞成分。第二个目的是比较动员的富含血小板的血浆(M-PRP)与浓缩的骨髓抽吸物(cBMA)和使用相同的 PRP 系统从同一受试者中创建的 PRP。
招募了 10 名健康志愿者进行 3 种组织来源的采集和分析:未经处理的外周血、骨髓抽吸物和粒细胞集落刺激因子动员的外周血,涉及 4 个基于体重的粒细胞集落刺激因子剂量。使用即时血液和骨髓浓缩系统创建 3 种产品:PRP、cBMA 和 M-PRP。对所有产品进行自动血液学分析,以定量总红细胞、白细胞(WBC)、单核细胞、血小板和造血祖细胞(HPC)浓度。使用流式细胞术确定造血和间充质祖细胞群体。最后,对浓缩物进行培养,并评估成纤维细胞集落形成单位(CFU-F)和贴壁细胞的形态。
与 PRP 相比,M-PRP 含有更高浓度的白细胞(平均差异= 53.2 k/μL;P <.0001)、单核细胞(平均差异= 8.3 k/μL;P =.002)和 HPC 浓度有升高趋势(平均差异= 200.5 /μL;P =.060)。与 cBMA 相比,M-PRP 含有更高浓度的单核细胞(平均差异= 5.5 k/μL;P =.017)和 HPC 浓度有升高趋势(平均差异= 193.4 /μL;P =.068)。与 PRP 相比,M-PRP 血小板浓度相似(平均差异= 110 k/μL;P =.051),而 PRP 浓度高于 cBMA(平均差异= 458 k/μL;P =.003)。cBMA 仍然是唯一能够产生 CFU-Fs(446 ± 247 /mL)的产品,因为 M-PRP 和 PRP 都不能产生 CFU-Fs。M-PRP 产生的集落与白细胞一致。
使用粒细胞集落刺激因子动员的血液和专有的 PRP 系统产生的 M-PRP 比 cBMA 含有更多的总白细胞、单核细胞、血小板和 HPC,比 PRP 含有更多的白细胞、单核细胞和 HPC。
动员的富含血小板的血浆(PRP)可能是 cBMA 的替代物,可作为骨科治疗的即时护理产品。