State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, People's Republic of China. University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
Rep Prog Phys. 2020 Sep;83(9):096101. doi: 10.1088/1361-6633/aba6f0. Epub 2020 Jul 17.
Fourier ptychographic microscopy (FPM) is a promising and fast-growing computational imaging technique with high resolution, wide field-of-view (FOV) and quantitative phase recovery, which effectively tackles the problems of phase loss, aberration-introduced artifacts, narrow depth-of-field and the trade-off between resolution and FOV in conventional microscopy simultaneously. In this review, we provide a comprehensive roadmap of microscopy, the fundamental principles, advantages, and drawbacks of existing imaging techniques, and the significant roles that FPM plays in the development of science. Since FPM is an optimization problem in nature, we discuss the framework and related work. We also reveal the connection of Euler's formula between FPM and structured illumination microscopy. We review recent advances in FPM, including the implementation of high-precision quantitative phase imaging, high-throughput imaging, high-speed imaging, three-dimensional imaging, mixed-state decoupling, and introduce the prosperous biomedical applications. We conclude by discussing the challenging problems and future applications. FPM can be extended to a kind of framework to tackle the phase loss and system limits in the imaging system. This insight can be used easily in speckle imaging, incoherent imaging for retina imaging, large-FOV fluorescence imaging, etc.
傅里叶叠层相位显微镜(FPM)是一种很有前途且快速发展的计算成像技术,具有高分辨率、大视场(FOV)和定量相位恢复的特点,可有效解决传统显微镜中相位损失、像差引入的伪影、景深窄以及分辨率和 FOV 之间的权衡问题。在这篇综述中,我们提供了显微镜的全面路线图,包括现有成像技术的基本原理、优点和缺点,以及 FPM 在科学发展中的重要作用。由于 FPM 本质上是一个优化问题,我们讨论了其框架和相关工作。我们还揭示了 FPM 与结构光照明显微镜之间的欧拉公式之间的联系。我们回顾了 FPM 的最新进展,包括高精度定量相位成像、高通量成像、高速成像、三维成像、混合态解耦的实现,并介绍了蓬勃发展的生物医学应用。最后,我们讨论了具有挑战性的问题和未来的应用。FPM 可以扩展到一种框架中,以解决成像系统中的相位损失和系统限制。这种见解可以很容易地应用于散斑成像、视网膜成像的非相干成像、大 FOV 荧光成像等领域。