Wang Ruihai, Yang Liming, Lee Yujin, Sun Kevin, Shen Kuangyu, Zhao Qianhao, Wang Tianbo, Zhang Xincheng, Liu Jiayi, Song Pengming, Zheng Guoan
Department of Biomedical Engineering, University of Connecticut, Storrs, USA.
School of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea.
Adv Opt Mater. 2024 May 28;12(15). doi: 10.1002/adom.202303028. Epub 2024 Feb 7.
Fourier ptychography (FP) is an enabling imaging technique that produces high-resolution complex-valued images with extended field coverages. However, when FP images a phase object with any specific spatial frequency, the captured images contain only constant values, rendering the recovery of the corresponding linear phase ramp impossible. This challenge is not unique to FP but also affects other common microscopy techniques -- a rather counterintuitive outcome given their widespread use in phase imaging. The underlying issue originates from the non-uniform phase transfer characteristic inherent in microscope systems, which impedes the conversion of object wavefields into discernible intensity variations. To address this challenge, we present spatially-coded Fourier ptychography (scFP), a new method that synergizes FP with spatial-domain coded detection for true quantitative phase imaging. In scFP, a flexible and detachable coded thin film is attached atop the image sensor in a regular FP setup. The spatial modulation of this thin film ensures a uniform phase response across the entire synthetic bandwidth. It improves reconstruction quality and corrects refractive index underestimation issues prevalent in conventional FP and related tomographic implementations. The inclusion of the coded thin film further adds a new dimension of measurement diversity in the spatial domain. The development of scFP is expected to catalyse new research directions and applications for phase imaging, emphasizing the need for true quantitative accuracy with uniform frequency response.
傅里叶叠层成像术(FP)是一种成像技术,可生成具有大视场覆盖范围的高分辨率复值图像。然而,当FP对具有任何特定空间频率的相位物体成像时,捕获的图像仅包含恒定值,使得无法恢复相应的线性相位斜坡。这一挑战并非FP所独有,也影响其他常见的显微镜技术——考虑到它们在相位成像中的广泛应用,这是一个相当违反直觉的结果。根本问题源于显微镜系统固有的非均匀相位传递特性,这阻碍了物波场转换为可分辨的强度变化。为应对这一挑战,我们提出了空间编码傅里叶叠层成像术(scFP),这是一种将FP与空间域编码检测相结合的新方法,用于真正的定量相位成像。在scFP中,在常规FP设置下,将一个灵活且可拆卸的编码薄膜附着在图像传感器上方。该薄膜的空间调制确保了在整个合成带宽上具有均匀的相位响应。它提高了重建质量,并纠正了传统FP及相关断层成像实现中普遍存在的折射率低估问题。编码薄膜的加入还在空间域增加了测量多样性的新维度。scFP的发展有望催生出相位成像的新研究方向和应用,强调了对具有均匀频率响应的真正定量精度的需求。