Suppr超能文献

基于无监督深度神经网络先验的傅里叶叠层显微术。

Fourier ptychographic microscopy with untrained deep neural network priors.

出版信息

Opt Express. 2022 Oct 24;30(22):39597-39612. doi: 10.1364/OE.472171.

Abstract

We propose a physics-assisted deep neural network scheme in Fourier ptychographic microscopy (FPM) using untrained deep neural network priors (FPMUP) to achieve a high-resolution image reconstruction from multiple low-resolution images. Unlike the traditional training type of deep neural network that requires a large labelled dataset, this proposed scheme does not require training and instead outputs the high-resolution image by optimizing the parameters of neural networks to fit the experimentally measured low-resolution images. Besides the amplitude and phase of the sample function, another two parallel neural networks that generate the general pupil function and illumination intensity factors are incorporated into the carefully designed neural networks, which effectively improves the image quality and robustness when both the aberration and illumination intensity fluctuation are present in FPM. Reconstructions using simulated and experimental datasets are demonstrated, showing that the FPMUP scheme has better image quality than the traditional iterative algorithms, especially for the phase recovery, but at the expense of increasing computational cost. Most importantly, it is found that the FPMUP scheme can predict the Fourier spectrum of the sample outside synthetic aperture of FPM and thus eliminate the ringing effect of the recovered images due to the spectral truncation. Inspired by deep image prior in the field of image processing, we may impute the expansion of Fourier spectrums to the deep prior rooted in the architecture of the careful designed four parallel deep neural networks. We envisage that the resolution of FPM will be further enhanced if the Fourier spectrum of the sample outside the synthetic aperture of FPM is accurately predicted.

摘要

我们提出了一种基于傅里叶叠层显微镜(FPM)的物理辅助深度神经网络方案(FPMUP),使用未训练的深度神经网络先验(FPMUP)从多个低分辨率图像实现高分辨率图像重建。与传统的需要大量标记数据集的训练型深度神经网络不同,该方案不需要训练,而是通过优化神经网络参数来拟合实验测量的低分辨率图像来输出高分辨率图像。除了样品函数的幅度和相位外,还将另外两个生成一般光瞳函数和照明强度因子的平行神经网络纳入精心设计的神经网络中,这有效地提高了 FPM 中存在像差和照明强度波动时的图像质量和鲁棒性。使用模拟和实验数据集进行了重建,结果表明,与传统的迭代算法相比,FPMUP 方案具有更好的图像质量,特别是在相位恢复方面,但代价是增加了计算成本。最重要的是,发现 FPMUP 方案可以预测 FPM 合成孔径外的样品的傅里叶谱,从而消除由于谱截断而导致的恢复图像的振铃效应。受图像处理领域中深度图像先验的启发,我们可以将傅里叶谱的扩展归因于深度先验,该深度先验根植于精心设计的四个平行深度神经网络的结构中。如果能够准确预测 FPM 合成孔径外的样品的傅里叶谱,我们预计 FPM 的分辨率将进一步提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验