Suppr超能文献

一种使用双端读出探测器的高分辨率小动物 PET 扫描仪的 GPU 加速全 3D OSEM 图像重建。

A GPU-accelerated fully 3D OSEM image reconstruction for a high-resolution small animal PET scanner using dual-ended readout detectors.

机构信息

Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, People's Republic of China.

Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.

出版信息

Phys Med Biol. 2020 Dec 4;65(24):245007. doi: 10.1088/1361-6560/aba6f9.

Abstract

In this work, a GPU-accelerated fully 3D ordered-subset expectation maximization (OSEM) image reconstruction with point spread function (PSF) modeling was developed for a small animal PET scanner with a long axial field of view (FOV). Dual-ended readout detectors that provided high depth of interaction (DOI) resolution were used for the small animal PET scanner to simultaneously achieve uniform high spatial resolution and high sensitivity. First, we developed a novel sinogram generation method, in which the dimension of the sinogram was determined first and then an event was assigned to a few neighboring sinogram elements by using weights that are inversely proportional to the distance from the measured line of response (LOR) to the LOR of the sinogram elements. System geometric symmetry, precomputation of LOR-driven ray-tracing and texture memory were applied to accelerate the GPU-based reconstruction. We developed a spatially variant PSF model where the PSF parameters were obtained by using point source images measured at 18 positions in the FOV and a spatial invariant PSF model where the PSF parameters were obtained by using only one image measured at the center FOV. The performance of the image reconstruction method was evaluated by using simulated phantom data as well as phantom and in-vivo mouse data acquired on the scanner. The results showed that the proposed reconstruction method provided better spatial resolution, a higher contrast recovery coefficient and lower noise than the OSEM reconstruction and was more than 1000 times faster than the CPU-based reconstruction. The spatially variant PSF model did not result in any spatial resolution improvement compared to the spatial invariant PSF model, and thus, the latter that is much easier to implement in image reconstruction and can be used in a small animal PET scanner using detectors with very high DOI resolution. A whole body F-FDG mouse image with high resolution and a high contrast to noise ratio was obtained by using the proposed reconstruction method.

摘要

在这项工作中,我们开发了一种 GPU 加速的完全 3D 有序子集期望最大化(OSEM)图像重建方法,该方法具有点扩散函数(PSF)建模功能,适用于具有长轴向视野(FOV)的小动物 PET 扫描仪。用于小动物 PET 扫描仪的双端读出探测器提供了高深度-of-interaction(DOI)分辨率,同时实现了均匀的高空间分辨率和高灵敏度。首先,我们开发了一种新颖的正弦图生成方法,其中首先确定正弦图的维度,然后通过使用与从测量线响应(LOR)到正弦图元素的 LOR 的距离成反比的权重,将事件分配给几个相邻的正弦图元素。系统几何对称性、LOR 驱动射线追踪的预计算和纹理内存被应用于加速基于 GPU 的重建。我们开发了一种空间变化的 PSF 模型,其中 PSF 参数是通过在 FOV 中的 18 个位置测量的点源图像获得的,以及一种空间不变的 PSF 模型,其中 PSF 参数是通过仅在 FOV 中心测量的一个图像获得的。通过使用扫描仪上获取的模拟体模数据以及体模和体内小鼠数据评估图像重建方法的性能。结果表明,与 OSEM 重建相比,所提出的重建方法提供了更好的空间分辨率、更高的对比度恢复系数和更低的噪声,并且比基于 CPU 的重建快 1000 多倍。与空间不变的 PSF 模型相比,空间变化的 PSF 模型并没有导致任何空间分辨率的提高,因此,后者在具有非常高 DOI 分辨率的探测器的小动物 PET 扫描仪中更易于实现,并可用于图像重建。使用所提出的重建方法获得了具有高分辨率和高对比度噪声比的全身 F-FDG 小鼠图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验