Suppr超能文献

使用双重纹理特征的动态正电子发射断层显像

Dynamic PET Imaging Using Dual Texture Features.

作者信息

Ouyang Zhanglei, Zhao Shujun, Cheng Zhaoping, Duan Yanhua, Chen Zixiang, Zhang Na, Liang Dong, Hu Zhanli

机构信息

School of Physics, Zhengzhou University, Zhengzhou, China.

Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.

出版信息

Front Comput Neurosci. 2022 Jan 7;15:819840. doi: 10.3389/fncom.2021.819840. eCollection 2021.

Abstract

This study aims to explore the impact of adding texture features in dynamic positron emission tomography (PET) reconstruction of imaging results. We have improved a reconstruction method that combines radiological dual texture features. In this method, multiple short time frames are added to obtain composite frames, and the image reconstructed by composite frames is used as the prior image. We extract texture features from prior images by using the gray level-gradient cooccurrence matrix (GGCM) and gray-level run length matrix (GLRLM). The prior information contains the intensity of the prior image, the inverse difference moment of the GGCM and the long-run low gray-level emphasis of the GLRLM. The computer simulation results show that, compared with the traditional maximum likelihood, the proposed method obtains a higher signal-to-noise ratio (SNR) in the image obtained by dynamic PET reconstruction. Compared with similar methods, the proposed algorithm has a better normalized mean squared error (NMSE) and contrast recovery coefficient (CRC) at the tumor in the reconstructed image. Simulation studies on clinical patient images show that this method is also more accurate for reconstructing high-uptake lesions. By adding texture features to dynamic PET reconstruction, the reconstructed images are more accurate at the tumor.

摘要

本研究旨在探讨在动态正电子发射断层扫描(PET)成像结果重建中添加纹理特征的影响。我们改进了一种结合放射学双纹理特征的重建方法。在该方法中,添加多个短时间帧以获得复合帧,并将由复合帧重建的图像用作先验图像。我们使用灰度 - 梯度共生矩阵(GGCM)和灰度行程长度矩阵(GLRLM)从先验图像中提取纹理特征。先验信息包含先验图像的强度、GGCM的逆差矩以及GLRLM的长行程低灰度级强调。计算机模拟结果表明,与传统的最大似然法相比,所提出的方法在动态PET重建获得的图像中具有更高的信噪比(SNR)。与类似方法相比,所提出的算法在重建图像中的肿瘤处具有更好的归一化均方误差(NMSE)和对比度恢复系数(CRC)。对临床患者图像的模拟研究表明,该方法在重建高摄取病变时也更准确。通过在动态PET重建中添加纹理特征,重建图像在肿瘤处更准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/641e/8782430/d309633f677f/fncom-15-819840-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验