Suppr超能文献

基于低复杂度射频识别基础设施的室内大规模多输入多输出的接收信号强度指示定位

Indoor Large-Scale MIMO-Based RSSI Localization with Low-Complexity RFID Infrastructure.

作者信息

El-Absi Mohammed, Zheng Feng, Abuelhaija Ashraf, Al-Haj Abbas Ali, Solbach Klaus, Kaiser Thomas

机构信息

Institute of Digital Signal Processing, University of Duisburg-Essen, 47057 Duisburg, Germany.

Electrical Engineering Department, Applied Science Private University, Amman 11931, Jordan.

出版信息

Sensors (Basel). 2020 Jul 15;20(14):3933. doi: 10.3390/s20143933.

Abstract

Indoor localization based on unsynchronized, low-complexity, passive radio frequency identification (RFID) using the received signal strength indicator (RSSI) has a wide potential for a variety of internet of things (IoTs) applications due to their energy-harvesting capabilities and low complexity. However, conventional RSSI-based algorithms present inaccurate ranging, especially in indoor environments, mainly because of the multipath randomness effect. In this work, we propose RSSI-based localization with low-complexity, passive RFID infrastructure utilizing the potential benefits of large-scale MIMO technology operated in the millimeter-wave band, which offers channel hardening, in order to alleviate the effect of small-scale fading. Particularly, by investigating an indoor environment equipped with extremely simple dielectric resonator (DR) tags, we propose an efficient localization algorithm that enables a smart object equipped with large-scale MIMO exploiting the RSSI measurements obtained from the reference DR tags in order to improve the localization accuracy. In this context, we also derive Cramer-Rao lower bound of the proposed technique. Numerical results evidence the effectiveness of the proposed algorithms considering various arbitrary network topologies, and results are compared with an existing algorithm, where the proposed algorithms not only produce higher localization accuracy but also achieve a greater robustness against inaccuracies in channel modeling.

摘要

基于接收信号强度指示符(RSSI)的非同步、低复杂度、无源射频识别(RFID)室内定位,因其能量收集能力和低复杂度,在各种物联网(IoT)应用中具有广泛潜力。然而,传统的基于RSSI的算法存在测距不准确的问题,尤其是在室内环境中,主要原因是多径随机效应。在这项工作中,我们提出利用毫米波频段运行的大规模MIMO技术的潜在优势,即信道硬化,来减轻小规模衰落的影响,从而实现基于RSSI的低复杂度无源RFID基础设施室内定位。具体而言,通过研究配备极其简单的介质谐振器(DR)标签的室内环境,我们提出一种高效的定位算法,该算法使配备大规模MIMO的智能物体能够利用从参考DR标签获得的RSSI测量值来提高定位精度。在此背景下,我们还推导了所提技术的克拉美罗下界。数值结果证明了所提算法在考虑各种任意网络拓扑时的有效性,并将结果与现有算法进行了比较,所提算法不仅能产生更高的定位精度,而且在信道建模不准确的情况下具有更强的鲁棒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验