Suppr超能文献

鼻科学中的医学数据科学:背景与对临床医生的影响。

Medical data science in rhinology: Background and implications for clinicians.

机构信息

Department of Otorhinolaryngology, SoonChunHyang University Hospital, Gumi, South Korea.

Innovation Technology Research Division, Gumi Electronic & Information Technology Research Institute, Gumi, South Korea.

出版信息

Am J Otolaryngol. 2020 Nov-Dec;41(6):102627. doi: 10.1016/j.amjoto.2020.102627. Epub 2020 Jul 2.

Abstract

BACKGROUND

An important challenge of big data is using complex information networks to provide useful clinical information. Recently, machine learning, and particularly deep learning, has enabled rapid advances in clinical practice. The application of artificial intelligence (AI) and machine learning (ML) in rhinology is an increasingly relevant topic.

PURPOSE

We review the literature and provide a detailed overview of the recent advances in AI and ML as applied to rhinology. Also, we discuss both the significant benefits of this work as well as the challenges in the implementation and acceptance of these methods for clinical purposes.

METHODS

We aimed to identify and explain published studies on the use of AI and ML in rhinology based on PubMed, Scopus, and Google searches. The search string "nasal OR respiratory AND artificial intelligence OR machine learning" was used. Most of the studies covered areas of paranasal sinuses radiology, including allergic rhinitis, chronic rhinitis, computed tomography scans, and nasal cytology.

RESULTS

Cluster analysis and convolutional neural networks (CNNs) were mainly used in studies related to rhinology. AI is increasingly affecting healthcare research, and ML technology has been used in studies of chronic rhinitis and allergic rhinitis, providing some exciting new research modalities.

CONCLUSION

AI is especially useful when there is no conclusive evidence to aid decision making. ML can help doctors make clinical decisions, but it does not entirely replace doctors. However, when critically evaluating studies using this technique, rhinologists must take into account the limitations of its applications and use.

摘要

背景

大数据面临的一个重要挑战是利用复杂的信息网络提供有用的临床信息。最近,机器学习,尤其是深度学习,已经在临床实践中取得了快速进展。人工智能(AI)和机器学习(ML)在鼻科学中的应用是一个日益相关的话题。

目的

我们回顾文献,详细概述 AI 和 ML 在鼻科学中的应用最新进展。此外,我们还讨论了这项工作的显著益处,以及在为临床目的实施和接受这些方法方面面临的挑战。

方法

我们旨在根据 PubMed、Scopus 和 Google 搜索,确定并解释鼻科学中使用 AI 和 ML 的已发表研究。搜索字符串为“nasal OR respiratory AND artificial intelligence OR machine learning”。大多数研究涵盖了副鼻窦放射学领域,包括变应性鼻炎、慢性鼻炎、计算机断层扫描和鼻细胞学。

结果

聚类分析和卷积神经网络(CNN)主要用于与鼻科学相关的研究。人工智能越来越影响医疗保健研究,机器学习技术已应用于慢性鼻炎和变应性鼻炎的研究,提供了一些令人兴奋的新研究模式。

结论

当没有确凿的证据来辅助决策时,人工智能特别有用。机器学习可以帮助医生做出临床决策,但它并不能完全取代医生。然而,当使用这项技术批判性地评估研究时,鼻科医生必须考虑到其应用的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验