Suppr超能文献

免疫和生物信息学鉴定 SARS-CoV-2 蛋白结构中的 T 细胞和 B 细胞表位:系统评价。

Immune and bioinformatics identification of T cell and B cell epitopes in the protein structure of SARS-CoV-2: A systematic review.

机构信息

Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran; Department of Environmental Health Engineering, Faculty of Health, Ilam University of Medical Sciences, Ilam, Iran.

Department of Microbiology, Parasitology and Immunology, Ardebil University of Medical Sciences, Ardebil, Iran.

出版信息

Int Immunopharmacol. 2020 Sep;86:106738. doi: 10.1016/j.intimp.2020.106738. Epub 2020 Jun 28.

Abstract

The beginning of 2020 was marked as the emergence of a COVID-19 outbreak caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Currently, there is no vaccine or approved treatment for this infectious virus so the invention of an efficient vaccine is certainly a high priority. Some studies have employed several techniques to facilitate the combination of the immunoinformatics approach and comparative genomic approach in order to determine the potential peptides for designing the T-cell epitope-based peptide vaccine using the 2019-nCoV envelope protein as a target. Via screening the bioimmunoinformatic SARS-CoV2 derived B-cell and T-cell epitopes within the basic immunogenic of SARS-CoV2 proteins, we presented a set of inferred B-cell and T-cell epitopes from the spike (S) and nucleocapsid (N) proteins with high antigenicity and without allergenic property or toxic effects. Our findings provide a screened set of epitopes that can be introduced as potential targets for developing peptide vaccines against the SARS-CoV-2 virus.

摘要

2020 年初,一种由新型冠状病毒引起的 COVID-19 疫情爆发,该病毒为严重急性呼吸系统综合征冠状病毒 2(SARS-CoV-2)。目前,针对这种传染性病毒尚无疫苗或经批准的治疗方法,因此发明有效的疫苗无疑是当务之急。一些研究采用了多种技术,将免疫信息学方法和比较基因组学方法相结合,以便利用 2019-nCoV 包膜蛋白作为靶点,确定用于设计基于 T 细胞表位的肽疫苗的潜在肽。通过筛选 SARS-CoV2 来源的 B 细胞和 T 细胞表位的生物免疫信息学,我们从刺突(S)和核衣壳(N)蛋白中提出了一套具有高抗原性、无变应原性或毒性作用的推断 B 细胞和 T 细胞表位。我们的研究结果提供了一组经筛选的表位,可作为开发针对 SARS-CoV-2 病毒的肽疫苗的潜在靶标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验