Suppr超能文献

重建和生化特征分析祖基因,为禾本科萜烯合酶功能的进化提供了深入的见解。

The reconstruction and biochemical characterization of ancestral genes furnish insights into the evolution of terpene synthase function in the Poaceae.

机构信息

Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll Straße 8, 07745, Jena, Germany.

Department of Plant Sciences, University of Tennessee, Knoxville, TN, 37996, USA.

出版信息

Plant Mol Biol. 2020 Sep;104(1-2):203-215. doi: 10.1007/s11103-020-01037-4. Epub 2020 Jul 18.

Abstract

Distinct catalytic features of the Poaceae TPS-a subfamily arose early in grass evolution and the reactions catalyzed have become more complex with time. The structural diversity of terpenes found in nature is mainly determined by terpene synthases (TPS). TPS enzymes accept ubiquitous prenyl diphosphates as substrates and convert them into the various terpene skeletons by catalyzing a carbocation-driven reaction. Based on their sequence similarity, terpene synthases from land plants can be divided into different subfamilies, TPS-a to TPS-h. In this study, we aimed to understand the evolution and functional diversification of the TPS-a subfamily in the Poaceae (the grass family), a plant family that contains important crops such as maize, wheat, rice, and sorghum. Sequence comparisons showed that aside from one clade shared with other monocot plants, the Poaceae TPS-a subfamily consists of five well-defined clades I-V, the common ancestor of which probably originated very early in the evolution of the grasses. A survey of the TPS literature and the characterization of representative TPS enzymes from clades I-III revealed clade-specific substrate and product specificities. The enzymes in both clade I and II function as sesquiterpene synthases with clade I enzymes catalyzing initial C10-C1 or C11-C1 ring closures and clade II enzymes catalyzing C6-C1 closures. The enzymes of clade III mainly act as monoterpene synthases, forming cyclic and acyclic monoterpenes. The reconstruction and characterization of clade ancestors demonstrated that the differences among clades I-III were already present in their ancestors. However, the ancestors generally catalyzed simpler reactions with less double-bond isomerization and fewer cyclization steps. Overall, our data indicate an early origin of key enzymatic features of TPS-a enzymes in the Poaceae, and the development of more complex reactions over the course of evolution.

摘要

禾本科 TPS-a 亚家族的独特催化特征在草类进化早期就出现了,并且随着时间的推移,催化的反应变得更加复杂。萜烯在自然界中的结构多样性主要由萜烯合酶(TPS)决定。TPS 酶接受普遍存在的二磷酸烯丙酯作为底物,并通过催化碳正离子驱动的反应将它们转化为各种萜烯骨架。根据它们的序列相似性,陆地植物的萜烯合酶可以分为不同的亚家族,TPS-a 到 TPS-h。在这项研究中,我们旨在了解禾本科(禾本科)中 TPS-a 亚家族的进化和功能多样化,禾本科是一个包含重要作物的植物科,如玉米、小麦、水稻和高粱。序列比较表明,除了与其他单子叶植物共享的一个分支外,禾本科 TPS-a 亚家族由五个定义明确的分支 I-V 组成,其共同祖先可能在草类进化的早期就出现了。对 TPS 文献的调查和对分支 I-III 的代表性 TPS 酶的特征描述揭示了分支特异性的底物和产物特异性。I 型和 II 型酶均作为倍半萜合酶发挥作用,I 型酶催化初始 C10-C1 或 C11-C1 环闭合,II 型酶催化 C6-C1 闭合。III 型酶主要作为单萜合酶,形成环状和非环状单萜。分支祖先的重建和特征描述表明,分支 I-III 之间的差异在它们的祖先中就已经存在。然而,祖先通常催化更简单的反应,双键异构化和环化步骤较少。总体而言,我们的数据表明禾本科 TPS-a 酶的关键酶学特征在早期就出现了,并且在进化过程中发展出了更复杂的反应。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/193e/7417412/9588662b8702/11103_2020_1037_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验