Roney Caroline H, Wit Andrew L, Peters Nicholas S
School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Imperial Centre for Cardiac Engineering, Imperial College London, London, UK.
Arrhythm Electrophysiol Rev. 2020 Feb 12;8(4):273-284. doi: 10.15420/aer.2019.08.
Determining optimal treatment strategies for complex arrhythmogenesis in AF is confounded by the lack of consensus regarding the mechanisms causing AF. Studies report different mechanisms for AF, ranging from hierarchical drivers to anarchical multiple activation wavelets. Differences in the assessment of AF mechanisms are likely due to AF being recorded across diverse models using different investigational tools, spatial scales and clinical populations. The authors review different AF mechanisms, including anatomical and functional re-entry, hierarchical drivers and anarchical multiple wavelets. They then describe different cardiac mapping techniques and analysis tools, including activation mapping, phase mapping and fibrosis identification. They explain and review different data challenges, including differences between recording devices in spatial and temporal resolutions, spatial coverage and recording surface, and report clinical outcomes using different data modalities. They suggest future research directions for investigating the mechanisms underlying human AF.
由于在房颤(AF)致心律失常的机制方面缺乏共识,确定针对AF复杂心律失常发生的最佳治疗策略受到了阻碍。研究报告了不同的房颤机制,从分层驱动机制到无序的多个激活小波机制。房颤机制评估的差异可能是因为使用不同的研究工具、空间尺度和临床人群,在不同模型中记录房颤。作者回顾了不同的房颤机制,包括解剖学和功能性折返、分层驱动机制和无序的多个小波机制。然后,他们描述了不同的心脏标测技术和分析工具,包括激活标测、相位标测和纤维化识别。他们解释并回顾了不同的数据挑战,包括记录设备在空间和时间分辨率、空间覆盖范围和记录表面方面的差异,并报告了使用不同数据模式的临床结果。他们提出了未来研究方向,以探究人类房颤背后的机制。