Chu Chih-Wen, Masak Geneva, Yang Jing, Davidson Lance A
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Integrative Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA.
Curr Opin Genet Dev. 2020 Aug;63:71-77. doi: 10.1016/j.gde.2020.05.011. Epub 2020 Jun 18.
Features of amphibian embryos that have served so well to elucidate the genetics of vertebrate development also enable detailed analysis of the physics that shape morphogenesis and regulate development. Biophysical tools are revealing how genes control mechanical properties of the embryo. The same tools that describe and control mechanical properties are being turned to reveal how dynamic mechanical information and feedback regulate biological programs of development. In this review we outline efforts to explore the various roles of mechanical cues in guiding cilia biology, axonal pathfinding, goblet cell regeneration, epithelial-to-mesenchymal transitions in neural crest, and mesenchymal-to-epithelial transitions in heart progenitors. These case studies reveal the power of Xenopus experimental embryology to expose pathways integrating mechanical cues with programs of development, organogenesis, and regeneration.
两栖动物胚胎的特征在阐明脊椎动物发育遗传学方面发挥了很好的作用,同时也有助于对塑造形态发生和调节发育的物理学进行详细分析。生物物理工具正在揭示基因如何控制胚胎的机械特性。描述和控制机械特性的相同工具正被用于揭示动态机械信息和反馈如何调节生物发育程序。在这篇综述中,我们概述了探索机械信号在指导纤毛生物学、轴突寻路、杯状细胞再生、神经嵴上皮-间充质转化以及心脏祖细胞间充质-上皮转化等方面的各种作用的研究工作。这些案例研究揭示了非洲爪蟾实验胚胎学在揭示将机械信号与发育、器官发生和再生程序整合在一起的途径方面的强大作用。